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Anomalous ordering in inhomogeneously strained materials
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We study a continuous quasi two-dimensional order-disorder phase transition that occurs in a
simple model of a material that is inhomogeneously strained due to the presence of dislocation lines.
Performing Monte Carlo simulations of different system sizes and using finite size scaling, we measure
critical exponents describing the transition of β = 0.18 ± 0.02, γ = 1.0 ± 0.1, and α = 0.10 ± 0.02.
Comparable exponents have been reported in a variety of physical systems. These systems undergo
a range of different types of phase transitions, including structural transitions, exciton percolation,
and magnetic ordering. In particular, similar exponents have been found to describe the development
of magnetic order at the onset of the pseudogap transition in high-temperature superconductors.
Their common universal critical exponents suggest that the essential physics of the transition in
all of these physical systems is the same as in our simple model. We argue that the nature of the
transition in our model is related to surface transitions although our model has no free surface.

PACS numbers: 64.60.Cn, 61.72.Bb, 64.60.F-, 74.72.Kf

Real solids are commonly in a strained state. This can
be due to a variety of reasons, ranging from forces applied
upon them to the presence of structural defects, to on-
going phase transformations. Such strains affect the or-
dering processes of the materials [1–6]. Therefore, under-
standing the extent of these effects is important. In this
Communication, we study the continuous order-disorder
phase transition in a model of a strained material. The
strain field we consider results from a “wall of disloca-
tions”, that is, a linear array of parallel edge dislocation
lines. This particular arrangement of defects is relatively
common in crystals, as it often occurs because of surface
treatments. The resulting strain is inhomogeneous, and
order develops inhomogeneously in the material, with
ordered regions growing in quasi two-dimensional lay-
ers around a central cylindrical rod-shaped nucleus [1].
Each layer orders at a different critical temperature. In
order to study the critical behavior of this process, we
consider a mesoscopic spin model in which the coupling
between spins reflects the strain field induced by the dis-
location walls. Performing several simulations of systems
with different sizes and using finite size scaling, we are
able to measure the critical exponents characterizing the
transition. The critical exponents found are comparable
with exponents that have been measured experimentally
in a variety of materials, and for different types of transi-
tions [1, 2, 7–14]. Notably, similar critical exponents have
recently been measured for the magnetic ordering tran-
sition that accompanies the onset of the pseudogap state
in high Tc superconductors [15–18]. These exponents are
also compatible with those found in multicritical surface
transitions [19], although in our case the exponents de-
scribe bulk measurements.

Assuming that atoms interact more strongly where
they are pushed closer together and more weakly where

they are pulled apart, a phenomological model that cap-
tures the effect of strain on ordering due to a dislocation
line can be constructed [1]. Assuming the defects are
arranged in walls extending in the y direction with the
lines parallel to z, it is found that the local relative crit-
ical temperature change τc(~r) is

τc (~r) ≡
T ′
c (~r)− Tc

Tc
∝

b
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sin
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)
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)

− cos
(

2πy
h

) ,

(1)
where ~r is the normal vector pointing from the closest dis-
location line, b is the magnitude of the Burgers vector, l is
the unit of length used, ν is Poisson’s ratio, h is the local
average distance between defects, T ′

c (~r) is the local tran-
sition temperature and Tc is the transition temperature
for a defect-free crystal. This results in inhomogeneous
ordering in which ordered regions nucleate and grow in
the vicinity of the dislocation lines via the addition of
quasi 2-D layers around nuclei with the shape of narrow
cylindrical rods [1]. Here we study the universal critical
scaling properties of this ordering process.
To identify the essential physics that controls the scal-

ing properties of this ordering behavior, we studied a
zero-field 3D Ising model on a simple cubic lattice with
periodic boundary conditions and nonconstant coupling
Jij between nearest neighbor spins i and j. The Hamil-
tonian is

H = −
∑

〈ij〉

Jijsisj , (2)

where si = ±1 is the value of the ith spin and 〈ij〉 indi-
cates sum over the nearest neighbor spins on the lattice.
The spins simply represent the state of local order. The
value of the coupling Jij is chosen in order to reflect the
strain field giving rise to Eq. 1 in the following way. First
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FIG. 1: (Color online) A) Magnetization order parameter
〈|m|〉 for the x-y cross section, averaged over sites in the z di-
rection, of a 45× 91× 40 system at a temperature of 4.49 kB .
The order-enhanced and order-suppressed zones are shown in
blue (dark) and yellow (light), respectively. B) Contour plot
of the same data. The contour lines are in a step of 0.025.
The innermost line in the blue (dark) order-enhanced region
corresponds to 0.55.

note that in a “regular” Ising model, with constant cou-
pling J0, the critical temperature is proportional to the
coupling constant:

J0 =
Tc

a
, (3)

where a is some proportionality constant. Also, from
Eq. 1 it follows that, given a τc (~r),

T ′
c (~r) = Tc (1 + τc (~r)) . (4)

Therefore, from Eqs. 3 and 4, the parts of the system
that become critical at a given temperature T ′

c are those
that have a coupling

J(~r) =
T ′
c (~r)

a
=

Tc

a
(1 + τc (~r)) = J0 (1 + τc (~r)) .

Thus, given the arbitrarity of J0 and of the other pro-
portionality constants, we set

J (~r) = 1 +
sin

(

2πy
h

)

cosh
(

2πx
h

)

− cos
(

2πy
h

) ,
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FIG. 2: (Color online) Finite size scaling data collapses for a
quasi two-dimensional layer at the surface of an ordered cylin-
drical nucleus. The black circles correspond to an x-y cross
section circumference of 50, the red squares to a circumfer-
ence of 102 and the green diamonds to a circumference of 200.
The critical exponent ν = 2.0 and the critical temperature is
Tc = 6.7. A) Magnetization scaling function 〈|m̃|〉 vs. |t̃| using
the long range order critical exponent β = 0.18. B) Suscep-
tibility scaling function χ̃ vs. scaled reduced temperature t̃

using the critical exponent γ = 1.0. C) Specific heat scaling
function c̃ vs. t̃ using the critical exponent α = 0.10.

where we take h to be the size of the system in the y direc-
tion. To reproduce the effects of the strain of a wall, we
use the above expression only for the coupling between
spins in the x and y directions, while we set the coupling
of the spins along z at 1. The simulated systems con-
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FIG. 3: (Color online) Finite size scaling data collapses for
the whole system. The black circles correspond to a size of
59 × 23 × 13, the red squares to a size of 109 × 43 × 25, the
green diamonds to a size of 205×83×50 and the blue triangles
to a size of 417 × 167 × 101. The critical exponent ν = 2.0
and the critical temperature is Tc = 4.50. A) Magnetization
scaling function 〈|m̃|〉 vs. |t̃| using the long range order crit-
ical exponent β = 0.18. B) Susceptibility scaling function χ̃

vs. scaled reduced temperature t̃ using the critical exponent
γ = 1.1.

tained a single dislocation line in the center. The replicas
due to the periodic boundary conditions used effectively
turned it into a wall of lines. Notice that while the strain
field due to a single dislocation line is long-range, the one
due to a wall is short-ranged [1]. However, the field of
a wall maintains the dipole-like nature of the field of a
single line, with the effect of promoting the order on one
side of the system, while suppressing it on the other. The
order parameter in our simulations was given by the en-
semble averaged absolute value of the magnetization per
spin:

〈|m|〉 =
1

N

∣

∣

∣

∣

∣

∑

i

si

∣

∣

∣

∣

∣

,

where N is the total number of spins.
Using the Wolff algorithm [20], which is a cluster flip-

ping algorithm [21], we performed extensive Monte Carlo

simulations of this model. The cylindrical ordered re-
gions grow with decreasing temperature as the surfaces
of the cylinders order in a fashion consistent with earlier
predictions [1]. Figure 1 shows the order parameter in an
x-y cross section of a 45×91×40 system, averaged over z,
at a temperature of 4.49 in units of the Boltzmann con-
stant kB . As anticipated, order is increasingly enhanced
with proximity to the dislocation line on one half of the
system. On the other half, instead, order is increasingly
suppressed. Also notice that the contour lines closely fol-
low the predicted shape, shown in Fig. 6 of Ref. 1 and
computed by numerically solving the following paramet-
ric equations for a particular value of τc:

y (x) =
h

π
arctan







π ±
√

π2 + τ2c
[

1− cosh2
(

2πx
h

)]

τc
[

cosh
(

2πx
h

)

+ 1
]







;

x (y) = ±
h

2π
arccosh

{

2π tan
(

πy
h

)

+ τc
[

1− tan2
(

πy
h

)]

τc
[

1 + tan2
(

πy
h

)]

}

.

We find that the ordering occurs via a continuous tran-
sition. To measure the critical exponents, we simulated
systems of different sizes and estimated their values using
finite size scaling [22]. The observables measured were
the magnetization order parameter and the ensemble av-
eraged total energy, given by Eq. 2. From the fluctu-
ations of magnetization and energy we also calculated
the magnetic susceptibility χ and the specific heat c.
The measurements were taken at the same time over the
entire system and over an arbitrarily chosen quasi two-
dimensional layer, corresponding to a fixed, chosen value
of τc. For each value of the temperature we took ensem-
ble averages over a number of system updates between
106 and 108. The whole system sizes were 59× 23× 13,
109×43×25, and 205×83×50, while the circumferences
of the x-y cross sections of the quasi two-dimensional
layers measured were 50, 102 and 200, corresponding to
τc = 0.9. The sizes of the systems in the x direction were
chosen so that the coupling between spins was within
10−6 of unity at the boundaries.
To perform data collapses using finite size scaling, we

define the scaled reduced temperature t̃ as

t̃ (t) = L1/νt ,

where L is the length of the largest dimension of the
system considered, which in our case corresponds to the
length in the x direction, ν is the correlation length crit-
ical exponent and t ≡ T−Tc

Tc

is the reduced temperature.

With this definition of t̃, the scaling functions for the or-
der parameter, the magnetic susceptibility and the spe-
cific heat are, respectively,

〈|m̃|〉
(

t̃
)

= Lβ/ν〈|m|〉
(

t̃
)

,

χ̃
(

t̃
)

= L−γ/νχ
(

t̃
)

,

c̃
(

t̃
)

= L−α/νc
(

t̃
)

,
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where β, γ and α are the corresponding critical expo-
nents. The data collapses for the quasi two-dimensional
layer, shown in Fig. 2, allow estimates of the critical in-
dices of β = 0.18±0.02, γ = 1.0±0.1, α = 0.10±0.02 and
ν = 2.0 ± 0.1, with a critical temperature of 6.7 ± 0.2.
The errors were conservatively estimated as the range
over which a reasonable scaling collapse was achieved.

Similarly, the measurements of the whole systems,
whose data collapses are shown in Fig. 3, allow the val-
ues of the critical exponents to be estimated as β =
0.18 ± 0.02, γ = 1.1 ± 0.2 and ν = 2.0 ± 0.25, with a
critical temperature of 4.50 ± 0.05. We could not pro-
duce a good scaling collapse for the specific heat. Note
that we get essentially the same exponents for the whole
system that we do for the quasi two-dimensional layer.
This reveals that the nature of the transition of the whole
system is essentially the same as that of a quasi two-
dimensional layer. At any given temperature, there is a
part of the system that is critical. The biggest of these
parts corresponds to the measured critical temperature
for the whole system. Also notice that the susceptibility
for the smallest system does not scale well near the peak,
presumably due to finite size effects. The size of the error
bars on the data shown in Figs. 2 and 3 is substantially
smaller than the size of the symbols.

The exponents characterizing the transition are com-
patible with those corresponding to the, so-called, “spe-
cial” multicritical point in surface critical phenomena. In
particular, the value β = 0.18 was reported in Refs. [19]
and [23] and is consistent with prior theoretical calcu-
lations based on scaling [19, 24]. Also, the measured
mean-field value of the exponent γ = 1 is expected at the
multicritical point [25]. Furthermore, using the “bulk”
3d-Ising value for the critical exponent ν = 0.632 in the
scaling laws, as in Ref. [19], the hyperscaling relation
predicts α = 0.104, which is compatible with the one
we measured. Note, however, that while these previous
studies considered systems with an actual surface, our
model does not have free layers. In fact, the quasi two-
dimensional layers whose ordering we studied are in the
midst of of the system. Nevertheless, the ordering in our
system does occur in a quasi two-dimensional layer at the
surface of the already ordered region.

Similar exponents have also been measured for a num-
ber of different types of transitions in a variety of physical
systems, ranging from structural transitions, to the per-
colation of excitons in polymeric matrices, to magnetic
order in frustrated materials [1, 2, 7–14]. In particular,
as mentioned earlier, there have been recent observations
of magnetic ordering at the onset of the pseudogap tran-
sition in high-Tc superconductors in which similar critical
exponents have been measured [15–18]. Given the scale
invariant nature of critical phenomena, the fact that the
phase transition in our model apparently has the same set
of critical exponents suggests that the essential physics
is the same in both systems, and that our results may

be relevant to the open question of the nature of the
pseudogap state itself. Intriguingly, recent experiments
have shown that the onset of the pseudogap state is ac-
companied by local modulations of atomic displacement
that generate significant inhomogeneous strains [26, 27].
This suggests that, like the quasi two-dimensional order-
ing process we have considered, the pseudogap transition
occurs because of inhomogeneous strain.

Assuming this is true and noting that the pseudogap
transition precedes the onset of high-Tc superconductiv-
ity [17], it appears that some strain is required for the de-
velopment of high-Tc superconductivity. However, strain
is also known to adversely affect superconductivity [28–
31] and too much strain supresses it altogether [18]. The
optimal doping concentration of the high-Tc supercon-
ductor YBa2Cu3O7-δ occurs at only δ ≈ 0.08. Such a
small deviation from an exact stoichiometry presumably
introduces enough strain to cause a pseudogap transi-
tion while causing only minor adverse effects. This sup-
ports the idea that the pseudogap state is a physically
direct precursor to superconductivity, even though its
cause competes with it, consistent with some of the origi-
nal ideas concerning the mechanism of high-temperature
superconductivity [32, 33].

The authors are grateful to Simon C. Moss for many
helpful discussions. This work was supported by the NSF
through grant No. DMR-0908286 and by the Texas Cen-
ter for Superconductivity at the University of Houston
(TcSUH).
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