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Abstract. The interactions between the components of complex networks
are often directed. Proper modeling of such systems frequently requires the
construction of ensembles of digraphs with a given sequence of in- and out-degrees.
As the number of simple labeled graphs with a given degree sequence is typically
very large even for short sequences, sampling methods are needed for statistical
studies. Currently, there are two main classes of methods that generate samples.
One of the existing methods first generates a restricted class of graphs, then uses
a Markov Chain Monte-Carlo algorithm based on edge swaps to generate other
realizations. As the mixing time of this process is still unknown, the independence
of the samples is not well controlled. The other class of methods is based on the
Configuration Model that may lead to unacceptably many sample rejections due
to self-loops and multiple edges. Here we present an algorithm that can directly
construct all possible realizations of a given bi-degree sequence by simple digraphs.
Our method is rejection free, guarantees the independence of the constructed
samples, and provides their weight. The weights can then be used to compute
statistical averages of network observables as if they were obtained from uniformly
distributed sampling, or from any other chosen distribution.

PACS numbers: 02.10.Ox, 02.50.Ey, 89.75.Hc, 07.05.Tp

ar
X

iv
:1

10
9.

45
90

v1
  [

ph
ys

ic
s.

so
c-

ph
] 

 2
1 

Se
p 

20
11



Constructing and sampling directed graphs with given degree sequences 2

1. Introduction and definitions

In network modeling problems [1, 2, 3, 4, 5, 6, 7], one often needs to generate ensembles
of graphs obeying a given constraint. A typical constraint is the case when the only
information available is the degrees of the nodes, and not the actual connectivity
matrix. Note that the node degrees by themselves, that is the degree sequence in
general does not determine a graph uniquely: there can be a very large number
of graphs having the same degree sequence [8]. Full graph connectivity is uniquely
determined by the degree sequence only for a special class of sequences (see Ref. [9]
for the case of undirected graphs).

Often, the interest lies in the study of network observables, as determined by
the given sequence of degrees, and unbiased by anything else. These can be graph
theoretical measures, or properties of processes happening on the network (e.g.,
spreading processes, such as of opinion or disease). The problem of creating and
sampling graphs with a given degree sequence, i.e., degree-based graph construction [10,
11], is a well-known and challenging problem that has attracted considerable interest
amongst researchers [8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27,
28, 29, 30]. There are two main classes of algorithms that are used today to achieve the
construction of graphs with given degree sequences. One of them is typically referred
to as “switching" or edge-swap based [13, 15, 16, 25, 27], while the other one is usually
called “matching” or stub-matching based [8, 12, 14, 17, 31, 32, 33, 26, 34]. Switching
methods repeatedly swap the ends of two randomly chosen edges within a Markov
Chain Monte-Carlo (MCMC) scheme until a new, quasi-independent, sample is
produced. Unfortunately, the mixing time of MCMC schemes for arbitrary sequences is
not known in the general case. The other class consists of direct construction methods,
which perform pairwise matchings of the half-edges emanating from randomly chosen
nodes until all edges are realized. Unfortunately, this method can easily generate
multiple edges and self-loops, i.e., edges starting and ending on the same node, after
which the sample must be rejected in order to avoid biases [35]. For a comparison of
the two classes of methods see Ref. [23].

Recently, a novel degree-based construction [10] and sampling method [11] was
introduced for undirected graphs, which has a worst-case scaling of O(NM), where
M is the number of edges (2M is the sum of the degrees, which are given). A similar
method was obtained independently in Ref. [34], but that method is less efficient,
with a worst-case scaling of O(N2M). Although the algorithm in Ref. [11] is a
direct construction method using stub-matchings, it is rejection free, the samples are
statistically independent and the algorithm also provides a weight for every realization.

In many systems the interaction between two entities is not mutual but has
a direction from one to the other, such as in the cases of human relationships in
social networks [36], gene interactions in regulatory networks, trophic interactions in
food webs [20, 21], etc. Such systems require a representation by directed graphs
(digraphs). In fact, undirected graphs can be interpreted as digraphs in which there
are two, oppositely directed edges for each connected pair of nodes. Here we present
a generalization of the degree-based graph construction problem to directed graphs.
Some of the necessary mathematical foundations, laid down in Ref. [30], are here used
and expanded to introduce a digraph construction and sampling algorithm. Although
the approach follows closely the one introduced by us for the undirected case [11], the
generalization is not at all straightforward, and there are significant differences that
the directed nature of the links induces.



Constructing and sampling directed graphs with given degree sequences 3

(1,0) (1,2) (0,1)(2,1)(2,2)

(1,0) (1,2) (0,1)(2,1)(2,2) (1,2)

(2,0)

(2,2)

(0,1)

(1,2)

(2,0)

(2,2)

(0,1)

a) 

b) 

c) 

d) 

(1,2)

(1,2)

(3,0)

(1,2)(1,2)

(3,0)

(1,2)

(1,2)

e) 

Figure 1. Examples of realizations of graphical bi-degree sequences. Panels a)
and b) show two non-isomorphic realizations of the same bds. Panel c) shows
a digraph that cannot be obtained via the Havel-Hakimi algorithm for digraphs.
Panel d) shows a realization of a different bds. Panel e) illustrates that not all
possible connections lead to a simple digraph even if a bds is graphical: in fact,
the connections in the figure break the graphical character.

Before we present our algorithm, we introduce some notations, based on Ref [30].
Let us denote by d(i)

i and d(o)
i the in- and out-degrees of a node i. Given the sequence

D =
{(
d

(i)
1 , d

(o)
1

)
,
(
d

(i)
2 , d

(o)
2

)
, . . . ,

(
d

(i)
N , d

(o)
N

)}
of non-negative integer pairs, we want

to construct a simple directed graph G(V,E) such that node k ∈ V has (d
(i)
k , d

(o)
k )

for its in- and out-degrees, respectively, for all k = 1, 2, . . . , N . A simple directed
graph is a graph that has no self-loops, nor multiple directed edges in the same
direction between two nodes. There can be at most two edges between a pair of
nodes, oppositely directed. We call the sequence D a bi-degree sequence (bds for
short). When there is a simple digraph with a given bds D for its degrees, we say that
the bds is graphical and that the digraph realizes D. Equivalently, we will also talk
about “graphicality” as a property. We distinguish realizations as labeled digraphs,
and do not deal here with isomorphism questions. That is, if two realizations are
identical up to a permutation of their indices, i.e., they are isomorphic, we will still
consider them distinctly. In order to avoid isolated nodes, in the following we will
assume that d(i)

j + d
(o)
j > 0, for all j = 1, . . . , N . As examples, Figs. 1a) and 1b) show

two realizations of the bds D1 = {(1, 0), (1, 2), (2, 2), (2, 1), (0, 1)}, and Fig. 1c) shows
a realization of D2 = {(3, 0), (3, 0), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2)}. Examples
of non-graphical bds are the sequences D3 = {(2, 2), (2, 1), (1, 3), (1, 1)} and D4 =
{(5, 6), (5, 6), (5, 6), (4, 3), (3, 3), (2, 1), (2, 1), (1, 1)}.

Notice that even if a bds is graphical, not all connection sequences are guaranteed
to end up with a simple digraph. For example, Fig. 1d) shows a simple digraph
realization of D5 = {(0, 1), (2, 0), (1, 2), (2, 2)}. However, if we were to place the first
four edges as in Fig. 1e), we would break graphicality: from there on, we would not
be able to complete the realization of the bds without creating either self-loops or
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1	   2	   3	   4	   5	   6	  
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Figure 2. The construction of a digraph realizing a given bds proceeds by
connecting the out-stubs of the nodes to the in-stubs of other nodes. In this
“bipartite" representation the vertical grey bars represents single nodes.

multiple edges. Hence, it is important to find an algorithm that builds digraphs with
a given bds. As we will see, this is a challenging problem in itself.

An algorithm that builds a digraph from a given bds sequentially connects the
out-links of a node to the in-links of others. We can think of these out- and in-links
as “out-stubs” and “in-stubs” emanating from a node, that are paired up with the
corresponding stubs of other nodes. An intuitive representation of this is shown in
Fig. 2. As the graph construction algorithm proceeds, the number of stubs of the nodes
decreases. At any time during this process we will call the number of remaining in-
stubs and out-stubs of a node its residual in- and out-degrees, and the corresponding
bi-degree sequence D =

{(
d̄

(i)
1 , d̄

(o)
1

)
,
(
d̄

(i)
2 , d̄

(o)
2

)
. . . ,

(
d̄

(i)
N , d̄

(o)
N

)}
the residual bds.

Finally, another concept we will need to use in what follows is the notion of normal
order [30], which is essentially the lexicographic order on the bds. That is, we say that
a bds is in normal order, if for all 1 ≤ j ≤ N−1, we have either d(i)

j > d
(i)
j+1 or, if d(i)

j =

d
(i)
j+1, then d

(o)
j ≥ d

(o)
j+1. Thus, the bds D6 = {(5, 2), (4, 4), (4, 3), (2, 5), (2, 4), (2, 1)}

shown in Fig. 2, is arranged in normal order. Once a bds is in normal order, we will
use the words ‘left’ or ‘right’ to describe the directions towards lower or higher index
values in the sequence.

The remainder of this paper is organized as follows: Section 2 introduces the
fundamental mathematical notions and algorithmic considerations that are at the
basis of our digraph construction algorithm. Section 3 presents the algorithm and
its derivation details. Readers interested only in the algorithm itself may skip
Subsection 3.1 and proceed to the summary described in the beginning of Section 3
and in Subsection 3.2. Section 4 deals in detail with the digraph sampling problem,
provides the derivation of the sample weights and presents a simple example. Section 5
is dedicated to the complexity of the algorithm, and Section 6 concludes the paper.

2. Mathematical foundations

As seen from the examples above, not all sequences of non-negative integer pairs
can be realized by simple digraphs. The sufficient and necessary conditions for the
realizability of a bds are given by the "FR" theorem [37, 38, 39]:

Theorem 1 (Fulkerson-Ryser) A sequence of non-negative integer pairs D =
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{(
d

(i)
1 , d

(o)
1

)
, . . . ,

(
d

(i)
N , d

(o)
N

)}
with d(i)

1 ≥ d
(i)
2 ≥ . . . ≥ d

(i)
N is graphical iff

d
(i)
i ≤ N − 1 , d

(o)
i ≤ N − 1, 1 ≤ i ≤ N (1)

N∑

i=1

d
(i)
i =

N∑

i=1

d
(o)
i , (2)

and for all 1 ≤ k ≤ N − 1 :
k∑

i=1

d
(i)
i ≤

k∑

i=1

min
{
k − 1, d

(o)
i

}
+

N∑

i=k+1

min
{
k, d

(o)
i

}
. (3)

Given a bds, we can easily test if it is graphical using this theorem, and thus we will
also refer to it as the "FR test". Condition (1) states that both the number of in-
and out-degrees for all nodes must be no larger than the number of other nodes it
could connect to, or receive connections from. Condition (2) is a consequence of the
requirement that every out-stub must join an in-stub somewhere else; the sequence
D3 given in one of the above examples is not graphical because it fails this condition.
Condition (3) is less intuitive. Its left hand side is the total number of in-stubs that
the group of k highest in-degree nodes can receive. Within this group, a node’s out-
stubs can absorb no more of those in-stubs from the same group than its out-degree or
k − 1 (it cannot absorb from itself), whichever is smaller (giving the first sum on the
rhs of (3)). Outside of this group, a node cannot absorb more of those in-stubs than
its out-degree or k, whichever is smaller (the second sum on the rhs of (3)). Hence,
the necessity of (3). For the complete proof see Refs. [38, 39]. Note that the example
sequence D4 above fails condition 3 for k = 3. The FR test is the directed version of
the Erdős-Gallai (EG) theorem (test) for undirected graphs.

An important note is that bi-degree sequences are less constraining than
undirected ones. The out-stub of a node is always connected to an in-stub of another,
not affecting that node’s out-stubs, whereas such distinction does not exist for the
undirected case. Alternatively, if we disregard for a moment the directionality of the
links and consider the degree of the node to be the sum of its in- and out-degrees,
then the corresponding graph realizing the bds can have two edges running between
the same pair of nodes, whereas this is not allowed in the undirected case.

2.1. Algorithmic considerations

The FR theorem only tests for graphicality, but it does not provide an algorithm for
constructing the digraph(s) realizing the given bds. At first sight this might not seem
an issue. However, the sequence D5 in Figs. 1d and 1e) reminds us that graphicality
can easily be broken by a careless connection of stubs. Clearly, for the purposes of
digraph construction, it should not matter which edges we create first, as long as we
make sure that every connection made does not break graphicality. In other words, the
possibility to create the rest of the edges, so that a simple digraph results in the end,
must always be preserved. Thus, the key for the creation of an algorithm that builds
simple digraphs realizing a given bds without rejections is in a theorem that allows us
to check if we would break graphicality by placing a specific connection. Indeed, such
theorems exist, and they will be discussed below. However, interestingly, they require
that connections be made from the same node, until all its stubs are used away into
edges. That is, assuming that we already made some connections from a given node
i, preserving graphicality, these theorems give necessary and sufficient conditions for
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keeping graphicality by the next connection still involving node i. Simply put, they
won’t work in general, if we would attempt a new connection from j to k, where
j, k 6= i, while node i still has dangling stubs.

The connections already made from i to some set of nodes Xi represent a constraint
for the new connections from i, as these novel connections must avoid the set Xi. We
call such a constraint associated to a node a star constraint on that node. Once all
the stubs of node i are connected into edges while preserving graphicality, we obtain a
graphical residual sequence D′ on at most N − 1 nodes. Clearly, the new connections
we make from this point on will not be constrained in any way by the connections we
made from node i. For the purposes of realizing the sequence D′ we can just simply
remove node i with its fully completed connections, create a realization by a simple
graph of D′, then, in the end, add back node i with its connections to this graph in
order to obtain a realization of D. The comments above hold both for the undirected
and directed cases.

One might think of using the EG test for the undirected case and the FR test for
the directed case on a residual degree sequence to decide if graphicality was broken
after attempting a new connection from the same node. For the undirected case, we
have shown in Ref. [11] that the passing of the EG test by the residual sequence is only
a necessary condition, if there is already a star constraint on a node. For example,
consider the graphical degree sequence d = {6, 5, 5, 3, 3, 2, 1, 1}, and assume that we
made connections from node i = 3 to nodes X3 = {1, 6, 7}. The residual sequence after
these connections is d′ = {5, 5, 2, 3, 3, 1, 0, 1}. It is easy to check that it passes the EG
test. However, we will break graphicality with every realization of d′, because it will
form a double edge with one of the existing connections from node i = 3 to X3. Thus,
additional considerations have to be made to ensure the graphicality of the residual
sequence for the undirected case, as described in [11]. For the directed case here we
use the sufficient and necessary conditions for graphicality under star constraints as
provided by Theorem 2 below, proven in Ref. [30].

From now on, we will always talk about algorithms that first finish all the out-
stubs of a node before moving onto another node with non-zero out-degree. In the
case of a graphical bds, once all the out-degrees of all the nodes have been connected
into directed edges, we are guaranteed to have completed a digraph, because the total
number of in-stubs equals the total number of out-stubs, according to property (2).

2.2. Theorems on which the algorithm is based

An algorithm that builds graphical realizations of degree sequences of simple undirected
graphs is the Havel-Hakimi (HH) algorithm [40, 41]: we choose any node with non-
zero residual degree, then we connect all its stubs to nodes with the largest residual
degrees avoiding self and multiple connections. This process is repeated with other
nodes until all stubs of all nodes are used. There is a corresponding version of
the HH algorithm for bi-degree sequences as well, introduced first in Ref. [42], then
rediscovered independently in Ref. [30], the latter providing an alternative proof. The
HH algorithm for bds proceeds as follows: given a normal-ordered bds, choose any
node with non-zero residual out-degree, then connect all its out-stubs to nodes with
the largest residual in-degrees, without creating multiple edges running in the same
direction, nor self-loops. Reorder in normal order the residual sequence and repeat
this process until all stubs of all nodes are used. While for any given bds, the HH
algorithm will construct a set of digraphs, it cannot construct all possible digraphs
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realizing the same sequence, as shown in Ref. [30]. For example, the HH algorithm can
never result in the digraph shown in Fig. 1c) realizing the example sequence D2 above.
It is easy to see why: there are two kinds of nodes in this example, with bi-degrees
(3, 0) and (1, 2). The only nodes with non-zero out-degrees are the (1, 2) types. Using
the HH algorithm, we would have to connect both out-stubs of such a node to the
nodes with the largest in-degrees, that is to the two (3, 0) types. However, the digraph
in Fig. 1c) does not have a (1, 2) node being connected to both (3, 0) nodes, yet it
realizes the sequence. The limitation of the HH algorithm comes from the fact that
it prescribes to connect the out-stub of a node i to an in-stub of the node with the
largest residual in-degree that does not yet receive a connection from node i. However,
there can be other nodes whose in-stubs can form a connection with an out-stub of i
without breaking graphicality. This shows the importance of finding a method able
to build not just a realization of a bds, but all the possible realizations of any given
bds.

In the remainder, given a residual bds D, we denote by Ai
(
D
)
the allowed set of

i, i.e., the set of all nodes to which an out-stub of i can be connected without breaking
graphicality. Also, let us denote by Xi

(
D
)
the set of nodes to which connections were

already made from i, thus representing the star constraint at that stage.
The graphicality test under a star constraint on node i is provided as Theorem 2

below. In order to announce it, however, we need to introduce one more definition.
Consider a bds D and a given node i with out-degree d(o)

i > 0 from this bds. Let
us also consider a subset of nodes S ⊂ V such that |S| ≤ d

(o)
i , where |S| denotes the

number of nodes in S, i.e., its size, and for every node j ∈ S, d(i)
j > 0. Next, we take

D and reduce by unity the in-degrees of all its nodes in S, then reduce by |S| the
out-degree of node i. The bds D′ thus obtained will be called the bds reduced by S
about node i from bds D. Equivalently, D′ is the residual sequence obtained from D
after connecting an out-stub from i to an in-stub of every node from S.

Theorem 2 (Star-constrained graphicality) Let D be a bds in normal order on
N nodes, and let Xi, |Xi| ≤ N−1−d(o)

i , be a set of nodes whose in-stubs are forbidden
to be connected to the out-stubs of node i (including i). Define Li as the set of the
first ("leftmost") d(o)

i nodes in D but not from Xi. Then, there exists a simple digraph
which realizes D and avoids connections from i to Xi, if and only if the bds D′ reduced
by Li about node i from D is graphical.

The proof of this theorem is found in Ref. [30]. What this theorem does is to turn
a star-constrained graphicality problem for bds D into an unconstrained one on the
reduced bds D′. The graphicality of D′ is then easily tested via the FR theorem. The
set Li as defined above will be called the leftmost set for node i.

Although announced in its full generality, as Xi could be any predefined subset of
nodes with |Xi| ≤ N−1−d(o)

i , this theorem applies directly to the digraph construction
process when Xi represents the set of nodes to which connections were already made in
previous steps from the same node i, hence forbidding us to make further connections
from i to these very same nodes. In this case, the bds D represents the residual
sequence D at that stage of the construction process.

As discussed above, in order for us to be able to construct all the simple digraphs
that realize a given bds, we need to find the allowed set Ai

(
D
)
for the next out-

stub of i. Clearly, after every connection from the same node i, the residual sequence
changes, and along with it the allowed set may change as well. In order to find Ai

(
D
)
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for the next out-stub of node i, we could just simply attempt connections sequentially
to every node with non-zero in-degree not in Xi

(
D
)
∪ {i}, and test for graphicality

after each attempt using Th. 2. The set of nodes for which graphicality would have
been preserved would form Ai

(
D
)
.

However, this would be inefficient and, actually, not needed. In fact, we can
exploit a result which states that, if graphicality is broken by a connection, it will be
broken by all other connections to the right of the previous one, in the normal order
sense. This is expressed in the following:

Theorem 3 Let D be a graphical bds in normal order and let Xi be a forbidden set
for node i, with i ∈ Xi. Let j < k be two nodes such that j, k /∈ Xi. If the residual bds
Dj obtained from D after forming an edge directed from i to j is not graphical, then
the bi-degree sequence Dk obtained from D by forming a directed edge from i to k is
also not graphical.

This theorem follows from the direct contraposition of Lemma 6 in Ref. [30]. Thus,
what we need to do is to find efficiently the leftmost node q in the residual sequence
in normal order, a connection to which would break graphicality. We will refer to this
node q as the leftmost fail-node. All connections to this node and to nodes to its right
are guaranteed to break (star-constrained) graphicality, whereas all connections to its
left (with the exception of forbidden nodes and self) are guaranteed to preserve the
graphical character.

Note that both theorems 2 and 3 are based on the HH theorem for bi-degree
sequences. In fact theorem 2 is a generalization of the HH theorem to include star
constraints. Also note that, while for the FR theorem only the in-degrees must be
ordered non-increasingly, for the HH theorem and hence for both theorems 2 and
3, the bds must be in normal order, as ordering by in-degrees only is not sufficient.
This is easily seen from the following example of graphical bds (not in normal order)
D7 = {(2, 0), (2, 1), (0, 1), (0, 2)}. Using the HH theorem, if we do not worry about
normal ordering, but just order by in-degree, we could choose to connect the out-
stub of node (0, 1) to an in-stub of node (2, 0), then the out-stub of node (2, 1) to
the remaining in-stub of (2, 0) (connecting to the largest residual allowed residual in-
degree), after which we have clearly broken graphicality: both out-stubs of (0, 2) now
must be connected to the two in-stubs of (2, 1).

We are now ready to present our digraph construction algorithm, which produces
random samples from the set of all possible simple digraphs realizing a given bds.

3. The algorithm

Given a graphical bi-degree sequence D in normal order (initially D = D):

1) Define as work-node the lowest-index node i with non-zero (residual) out-degree.
2) Let Xi be the set of forbidden nodes for the work-node, which includes i, nodes

with zero in-degrees and nodes to which connections were made from i, previously.
In the beginning, Xi includes only the work-node and zero in-degree nodes.

3) Find the set of nodes, Ai that can be connected to the work-node without breaking
graphicality.

4) Choose a node m ∈ Ai uniformly at random and connect an out-stub of i to an
in-stub of m.

5) After this connection add node m to Xi.
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6) If node i still has out-stubs, bring the residual sequence in normal order, then
repeat the procedure from 3) until all out-stubs of the work node are connected
away into edges.

7) If there are other nodes left with out-stubs, reorder the residual degree sequence
in normal order, and repeat from 1).

The most involved step of the algorithm is finding the allowed set (step 3)), which is
described next.

3.1. Finding the allowed set

Let i be the work-node chosen as in 1) and let D denote the normal ordered, residual
sequence obtained after having connected some of the out-stubs of i to in-stubs of
other nodes, such that graphicality is still preserved. These previous connections from
node i form the set of forbidden nodes Xi for the next out-stub σ of i. Xi also contains
the work-node i itself i ∈ Xi and all other nodes with zero in-degrees. Let Li be the
set of the first (lowest index) d

(o)

i nodes from D, not in Xi. As D is (star constrained)
graphical, we can connect σ to any of the nodes in Li without breaking graphicality
(due to Theorem 2), hence Li ⊆ Ai.

Let m be the last element of Li in the normal ordered bds D and let us "color"
(label) red all the non-forbidden nodes, i.e., all the nodes not in Xi, to the right of
node m. Please note that these color labels are associated with the nodes, defined by
their bi-degrees, and not with their indices of location in the sequence. This set of
red nodes Ri forms the set of candidates for the leftmost fail-node q. All other nodes
are colored (labelled) black. To find the leftmost fail-node we could simply connect
out-stub σ to an in-stub of a red node `, add the new connection temporarily to the
set of forbidden nodes, bring the new residual sequence into normal order, then test
for graphicality using Theorem 2. This procedure could then be repeated sequentially,
with ` going over all the red nodes from left to right, until graphicality would fail for
the first time at ` = q. However, the considerations in the following paragraphs allow
us define a better method.

For the sake of argument let us perform the sequential testing as explained above.
It would imply the following steps for a given red node ` :

(a) Reduce the out-degree at the work-node i and the in-degree at ` by unity, that is
d

(o)

i 7→ d
(o)

i − 1 and d
(i)

` 7→ d
(i)

` − 1, resulting in a new residual bds D`.
(b) Bring D` into normal order (required by Theorem 2). Note that ` is the only node

whose in-degree has changed and only the work-node had its out-degree changed
(its in-degree was not affected). Thus, when bringing D` into normal order, the
relative positioning of all the other nodes does not change. The work-node might
have shifted to the right to a new position i′ within the block of nodes with the
same in-degree (i′ ≥ i), and the red node’s new position `′ might have also moved
to the right in the normal ordered sequence (`′ ≥ `).

(c) Add `′ to the forbidden set for the work-node.
(d) Now, as required by Theorem 2, reduce by unity the in-degrees of the nodes in

the left-most adjacency set Li′ , and reduce the out-degree of the work-node i′ to
zero. This results in the new sequence D′`′ .

(e) Order the bds D′`′ by in-degrees, non-increasingly.
(f) Apply the FR theorem to test for graphicality.
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Thus, whether the connection of the work-node i to ` breaks graphicality, ultimately
depends on whether the residual bds D′`′ fails (or passes) the FR test. However, as we
noted before, for the FR test we do not need to have the bds D′`′ in normal order, we
only need to have it ordered non-increasingly by the in-degrees. Additionally, observe
that in step (d) the reduction of the in-degrees always happens on the same set of
nodes, independently of the red node `, that is the left-most adjacency set Li′ is the
same for all `. Thus, in this particular case of Theorem 2’s application, ultimately
we do not need to bring D` into normal order (step (b)), only non-increasingly by
in-degrees, which would be done anyway in step (e). That means we can just skip
step (b), we do not need to move around any of the nodes at that stage. Thus, the
only difference between the sequences D′`′ for different `-s is at the position of this
node after the reordering in (e), with respect to the rest of the sequence.

These observations suggest that we should define a bds D′ obtained from the
bds D by reducing by unity the in-degrees of all nodes in the set Li \ {m} and by
d

(o)

i −1 the out-degree of the work-node i, leaving only one out-stub (out-stub σ) at i.
Clearly, the bds D′ is graphical (connecting out-stub σ to an in-stub of node m surely
preserves graphicality, by Theorem 2). Let us now order D′ non-increasingly by its
in-degrees, in a specific way, described as follows. Shift only the reduced in-degree
nodes in D to the right with respect to the rest of the sequence such as to restore
non-increasing ordering by the in-degrees (if needed). Since only the in-degrees of the
nodes in the set Li \ {m} have been reduced, keep the relative ordering of all other
nodes in D′ exactly the same as in D. Thus the relative ordering of the red nodes and
of the work node have been preserved as well. Let us denote the new location of the
work node in D′ by j (j ≤ i). Connecting now σ to an in-stub of a red node ` in this
sequence will produce the same set of residual bi-degrees as in step (d) above. To be
able apply the FR theorem, then all we need to do is to shift to the right node ` in the
sequence (if needed) to make sure that it is non-increasingly ordered by in-degrees.
Since only the in-degree at ` was modified (reduced by unity), this reordering is very
simple: if x denotes the location of the last node of the block of nodes with the same
in-degree as node ` in D′ (x ≥ `), then we simply swap the node at ` with the node
at x after the reduction of the in-degree at `. Let us denote the obtained sequence by
D′′. Clearly, it is non-increasingly ordered by in-degrees, and thus we can apply the
FR theorem to see if it is graphical. Note: it could happen that x = j (e.g., there are
many nodes with zero out-degree but larger in-degree than the work-node as defined
in 1)), however, the steps below can be applied just the same.

Next, we show how to identify the leftmost red fail-node q by investigating how
the inequalities in (3) break down. Since D′ is graphical, we have for all 1 ≤ k ≤ n−1
(n is the last element of D′) that L′(k) ≤ R′(k), where L′ and R′ are the left hand
side (lhs) and the right hand side (rhs) of inequalities (3) written for D′:

L′(k) =

k∑

s=1

d′
(i)

s , (4)

R′(k) =

k∑

s=1

min
{
k − 1, d′

(o)

s

}
+

n∑

s=k+1

min
{
k, d′

(o)

s

}
. (5)

Let us denote by L′′(k) and R′′(k) the lhs and rhs of the inequality (3) corresponding
to D′′. Since the rhs of (3) involves only out-degrees, and we only reduced the out-
degree of the work-node from 1 to 0, we will always have R′′(k) = R′(k) − 1, except
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when k = 1 and the work-node is at j = 1, in which case R′′(1) = R′(1). However,
in this case, L′′(1) = L′(1), because only the in-degree of j = 1 appears, which does
not get changed. Thus, since L′(1) ≤ R′(1) (D′ is graphical), graphicality cannot be
broken at k = 1 when j = 1. Let us now consider that the work-node is still at position
j = 1, but k > 1. For 1 < k < x, the in-degrees in D′′ are the same as those in D′,
hence L′′(k) = L′(k). For k ≥ x, however, we have L′′(k) = L′(k)− 1. Now consider
j > 1. For 1 ≤ k < x, we have L′′(k) = L′(k) and for k ≥ x, L′′(k) = L′(k)− 1. The
following summarizes the relationships above:

(A) j = 1:
(A.1) k = 1: L′′(1) = L′(1) , R′′(1) = R′(1) .

(A.2) 1 < k < x: L′′(k) = L′(k) , R′′(k) = R′(k)− 1 .

(A.3) x ≤ k: L′′(k) = L′(k)− 1 , R′′(k) = R′(k)− 1 .

(B) j > 1:
(B.1) 1 ≤ k < x: L′′(k) = L′(k) , R′′(k) = R′(k)− 1 .

(B.2) x ≤ k: L′′(k) = L′(k)− 1 , R′′(k) = R′(k)− 1 .

Since L′(k) ≤ R′(k) for all k, graphicality for D′′ can only be broken (that is to
have L′′ > R′′ for some k), if L′(k) = R′(k), namely in cases (A.2) and (B.1) above.
Observe that L′(k) and R′(k) are computed from D′, hence they are independent from
` or x. This gives us the following simple procedure for finding the leftmost fail-node,
if it exists. Starting from k = 2 for j = 1, and k = 1 for j > 1, find the smallest
k0 for which L′(k0) = R′(k0). If no such k0 exists, then there are no fail-nodes and
all non-forbidden nodes are to be included in the allowed set. If there is such a k0,
the first red node q′ to the right of k0 (q′ ≥ k0 + 1) is the leftmost fail-node of D′′,
which when identified in the original bds D will give the leftmost fail-node q. All
non-forbidden nodes to the left of q are to be included in the allowed set.

3.2. Summary for finding the allowed set

What we discussed in detail in the previous subsection corresponds to step (3) of the
main algorithm described in the beginning of Section 3. Given the normal-ordered
bds D at the end of step 2) of the main algorithm:

(3.1) Identify Li from the first d
(o)

i nodes not in Xi.
(3.2) Identify the “red” set Ri as those nodes that are neither in Li nor in Xi. Note,

the color label is associated with the node, not its index.
(3.3) Build D′ as follows:

d′
(i)

b =

{
d

(i)

b − 1 if b ∈ Li \ {m}
d

(i)

b otherwise

and

d′
(o)

c =

{
1 if c = i

d
(o)

c otherwise

where m is the last node in Li.
(3.4) Shift nodes from Li \{m} to the right in the sequence (and only these) such as to

restore ordering non-increasingly by in-degrees (if needed), preserving the color
labels of the nodes in the process. The work-node may have shifted to a new
location j after this step. This is the updated sequence D′.
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(3.5) Starting from k = 1 if j 6= 1 or from k = 2 if j = 1, find k0 as the smallest k
such that L′(k) = R′(k), where L′(k) and R′(k) are computed from the reordered
(after step (3.4)) D′ using (4) and (5). If there is no such k0, then the allowed
set Ai is all the nodes in D except nodes from the forbidden set Xi.

(3.6) Otherwise find the leftmost red node q′ in the updated bds D′ to the right of k0,
that is with q′ > k0. Then the corresponding node q in D , will be the leftmost fail
node. Note that q′ is the new position of the node at q in D after the reordering
in (3.4).

(3.7) The allowed set Ai is formed by all nodes in D not in Xi, and to the left of q.

4. The sampling problem

The algorithm generates an independent sample digraph every time it runs, without
restarts or rejections, and it guarantees that every possible realization of a graphical
bds by simple digraphs can be generated with a non-zero probability. However, the
algorithm realizes the digraphs with non-uniform probability. Nevertheless, knowing
the relative probability for every digraph’s occurrence allows us to calculate network
observable averages as if they were obtained from a uniform sampling. In particular,
the following expression, which is a well-known result in biased sampling [43, 44],
provides these averages as:

〈Q〉 =

∑M
j=1 w(sj)Q(sj)
∑M
j=1 w(sj)

, (6)

where Q is an observable measured from the samples sj generated by an algorithm.
The w(sj) sample weight is the inverse of the relative probability of the occurrence of
sj andM is the number of the samples generated. In Subsection 4.1 we give a detailed
derivation of this formula, specialized to our graph construction problem. The weights
of the samples generated by our algorithm are given by

w(s) =
∏

i

d
(o)
i∏

j=1

ki(j) . (7)

where i runs over all the nodes with non-zero out-degree as they are picked by the
algorithm to become work-nodes, and ki(j) = |Ai(j)| is the size of the allowed sets
Ai(j) just before connecting the j-th out-stub of i. Note that w ≥ 1 since there always
exists at least one digraph realizing the bds. Subsection 4.2 gives a derivation of (7).

4.1. Biased sampling over classes

Our algorithm sequentially connects all stubs from a series of work nodes and finishes
with a simple, labeled digraph. This process can be uniquely described by a path of
connection sequences. Having chosen a work node i1 for the first time, it determines
the allowed set Ai1 . We next choose uniformly at random a node j1(i1) ∈ Ai1 and
connect a stub of i1 to a stub at j1(i1). We could have chosen j1(i1) following any
other criterion, but in that case the expression (7) of the weights would have to be
modified accordingly. After this connection we recompute the new allowed set Aj1(i1),
then connect another stub of i1, and so on until all the stubs have been used up at i1.
Let us denote by s such a path of connection sequences:

s =

{
i1, j1(i1), . . . , j

d̄
(o)
i1

(i1); i2, j2(i2), . . . , j
d̄
(o)
i2

(i2) . . .

}
(8)
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where d̄(o)
i denotes the residual out-degree of node i. A path s uniquely defines the

digraph G(s) created, as the collection of all connections in (8) forms the edge set of
the created graph G(s). However, several paths may lead to the same digraph. Also
note that the order of the connections in (8) matters in the calculation of the weight,
as the corresponding allowed sets in general depend on history of connections up to
that point. For a finite bi-degree sequence the number of distinct samples (paths) is
also finite. Let us denote this set of paths by:

Π = {π1, . . . , πP } .
Let us now assume that we built with our algorithm a sequence of samples
s1, s2, . . . , sM , and that the sample numberM is large enough for us to see all elements
of Π sufficiently many times. Given some path s we compute a quantity Q(s), and
we are interested in calculating the average of Q over path ensembles. In our case Q
is defined on the final graph itself Q(s) = Q(G(s)), but for now we will not consider
that, explicitly. If we were just simply computing the average of Q over the set of
samples, we would obtain an average biased by the way the algorithm builds the paths
from Π:

〈Q〉 =
1

M

M∑

i=1

Q(si) =

P∑

k=1

Mk

M
Q(πk) , (9)

where Mk is the number of times we have seen path πk appear in the sequence of
samples. Clearly,

ρk = lim
M→∞

Mk

M
(10)

is the probability by which path πk is generated via the algorithm. We now assume
that we can compute analytically the path probabilities ρk, from knowing how the
algorithm works. Instead of (9) we want to compute the average as if it was measured
over the uniform ensemble of paths, that is:

〈Q〉up =
1

P

P∑

k=1

Q(πk) . (11)

If we form:

〈Q〉bp =

∑M
i=1

1
ρ(si)

Q(si)
∑M
i=1

1
ρ(si)

(12)

=

∑P
k=1

Mk

Mρ(πk)Q(πk)
∑P
k=1

Mk

Mρ(πk)

,

we have limM→∞〈Q〉bp = 〈Q〉up, due to (10). Thus, the weighted average (12) should
be used in order to obtain averages according to uniform sampling in theM � 1 limit.

Let us assume that there is an equivalence relation "∼" between paths, hence
inducing a partitioning of Π into K equivalence classes: Π = C1 ∪ . . . ∪ CK , where
C` =

{
πk`1 , . . . , πk`µ`

}
. The size of class C` is denoted by µ` = |C`|. We have

∑K
`=1 µ` = P . Alternatively, for some given path π, we will denote by C(π) the

equivalence class of π and by µ(π) = |C(π)| its size. Let us also assume that if s, r ∈ C`,
that is s ∼ r, then Q(s) = Q(r). For example, in our case distinct paths may lead to
the same digraph. We introduce the equivalence relation "∼" and say that two paths
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s and r are equivalent, s ∼ r if they produce the same labeled digraph, G(s) = G(r).
Clearly, if Q depends only on the constructed graph, i.e., Q(π) = Q (G(π)) for all
π ∈ Π, then Q(s) = Q(r) whenever s ∼ r.

Our goal is to obtain the average of Q uniformly over the equivalence classes, that
is:

〈Q〉uc =
1

K

K∑

`=1

Q
(
πk`1

)
, (13)

where we chose to write the first element of C` in the argument of Q, but of course,
any other element could have been chosen from the same class, as Q is constant within
a class. In general, (12) will not produce 〈Q〉uc, but a sum weighted by class sizes.
Instead, let us consider:

〈Q〉bc =

∑M
i=1

1
µ(si)ρ(si)

Q(si)
∑M
i=1

1
µ(si)ρ(si)

. (14)

It is then easy to see that:

〈Q〉bc =

∑P
k=1

Mk/M
µ(πk)ρ(πk)Q(πk)

∑P
k=1

Mk/M
µ(πk)ρ(πk)

M→∞−→ 〈Q〉uc .

In order for (14) to be useful in practice, one has to be able to compute the size
of the equivalence class µ(s) from seeing s and knowing how the algorithm works.
Fortunately this is possible in our case, as shown next.

4.2. Computing the weights

First, let us note that when connecting the out-stubs of a work-node we are not
affecting the out-stubs of any other nodes, but only in-stubs. Hence, all nodes with
non-zero out-degrees will eventually be picked as work-nodes by the algorithm. Since
normal ordering is first by in-degrees, the order in which nodes will become work-
nodes depends on the sequence of connections. Let us now calculate the probability of
the path s in (8). Given a residual sequence, the work-node i1 is uniquely determined
by the algorithm as described before. Since the next connection is picked uniformly
at random, the probability of the link from i1 to j1(i1) ∈ Ai1(j1) is |Ai1(j1)|−1. Let
ki(j) = |Ai(j)| denote the number of nodes in Ai(j). Then, it is easy to see that the
probability of a path s is given by:

ρ(s) =



∏

k

d
(o)
ik∏

j=1

kik(j)




−1

(15)

where i1, i2, . . . , denote the work-nodes in the order in which they are picked by the
algorithm. This expression can be computed readily in a computer as the algorithm
progresses. In order for us to use (14) it seems that we would need also to obtain the
size µ(s) of the class to which path s belongs. Clearly, two different paths s and s′

will result in the same graph (s ∼ s′) if and only if the sequence of connections in
one path is a permutation of the connections in the other path. Hence, the class size
µ(s) is nothing but the number of permutations of the connections, which is the same
for all paths, that is, all classes have the same size µ. Since all connections are made
from a node first before moving on to another, we have µ =

∏N
i=1 d

(o)
i ! . However,
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Figure 3. Biased sampling on the example bds D8. The measure monitored is
Newman’s assortativity coefficient r [45]. In b) the ensemble average was taken
over 50 runs.

we actually don’t need to use this number: one can simply multiply by µ both the
numerator and the denominator of (14) to obtain (6-7).

4.3. A simple example

In this subsection we illustrate the algorithm on a simple sequence: D8 =
{(2, 2), (2, 1), (1, 3), (1, 1), (1, 0)}. There are 11 distinct labeled digraphs realizing
this sequence and there are 2!1!3!1!0! = 12 paths in a class, leading to the
same graph. Two paths that lead to different graphs are for example s1 =
{(1, 4)(1, 2); (3, 1), (3, 5), (3, 2); (2, 1); (4, 3)} (connect an out-stub of node 1 to an in-
stub of node 4, etc.) and s2 = {(1, 2)(1, 3); (2, 1); (4, 1); (3, 4), (3, 5), (3, 2)}. For the
former, w(s1) = [ρ(s1)]−1 = 8 and for the latter it is w(s2) = [ρ(s2)]−1 = 54. Let us
now consider the Pearson coefficient r of degree-degree correlations, or the assortativity
coefficient defined for directed graphs [45] as our network observable Q = r. For each
one of the 11 graphical realizations of D8, r can be calculated exactly, as can the
uniform average over this ensemble, obtaining 〈r〉theo = −0.040506. We will refer to
〈r〉theo as the “theoretical value". We then let our algorithm run on this sequence
to produce M samples and using (6-7) to obtain the corresponding coefficient 〈r〉M .
Fig 3a) shows a few runs with different seeds and their convergence to the theoretical
value. Fig 3b) shows the standard deviation ([〈r〉M − 〈r〉theo]2)1/2 where the overline
denotes an ensemble average over runs.

5. Complexity of the algorithm

To determine the theoretical upper bound for the complexity of the algorithm, that
is the worst-case complexity, notice that there are only three steps in the algorithm
that require more than O (1) computational operations, or steps, to complete.

First, after each connection is placed, one must bring the residual sequence into
normal order, steps 6) or 7). To accomplish this, both the work-node i and the target
node m will have to move to the right, but the relative positions of all other nodes
will remain unchanged. In other words, if we were to remove nodes i and m, the
rest of the bds would already be sorted. Thus, in order to complete these steps, one
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only has to find the new positions of nodes i and m and insert them into the already
sorted bds. Therefore, the complexity of either one of step 6) and step 7) is simply
O (2 logN +N) ≈ O (N), where N is the number of the nodes in the sequence being
ordered.

Second, the allowed set A must be built before placing each connection (step 3).
Following the summary of this step, given in Subsection 3.2, notice that steps 3.1
to 3.4 can be all finished during a single scan of the residual bds. This is clearly so
for the creation of the leftmost set Li and for setting the “red” color labels (or flags)
(steps (3.1) and (3.4)). Concerning the ordering of the bds D′, it is possible to create
it already sorted by simply scanning the bds D while keeping track of the in-degree
d? of the nodes currently being copied and the index a in D′ of the first node with
that in-degree. Then, because D is in normal order, the only possibility for a node in
D′ to break the order is if its in-degree equals d? + 1. In this case, it can be simply
swapped with the node at a, because, as argued in Subsection 3.1, the mechanism to
build the allowed set is entirely based on the FR theorem, which does not require the
bds to be in normal order, but to be simply ordered non-increasingly by its in-degrees.
Thus, steps (3.1) to (3.4) can be completed in O (N) steps.

Third, the computation of the sums L′, R′ and their comparison must be
conducted, which is the same step as (3) in an FR test. To determine the complexity of
an FR test note that computing the repeated sums for each one of the inequalities (3)
is quite inefficient. Instead, below we derive recurrence relations that allow us to
complete the FR test in a linear, O (N) number of steps.

The steps of the main algorithm are done sequentially, and thus can all be
completed in a total of O (N) steps. They must, however, be repeated for each edge
in the digraph. Thus, the maximum complexity of the algorithm is O (NM) where
M =

∑
i d

(o)
i is the number of edges. Since O (M) ≤ O

(
N2
)
the maximum complexity

of the algorithm is O(N3). It is important to note though, that for a given bds the
complexity of the algorithm can be substantially smaller, similar to the case for our
undirected graph sampling algorithm [11].

5.1. The Fulkerson-Ryser test revisited

The most complex part of the Fulkerson-Ryser test is to compute the lhs and the rhs
of inequalities (3), which we rewrite here for the sake of readability:

L(k) =

k∑

s=1

d(i)
s ,

R(k) =

k∑

s=1

min
{
k − 1, d(o)

s

}
+

N∑

s=k+1

min
{
k, d(o)

s

}
.

Our goal is to find recursion relations for L(k) and R(k). For the lhs the relation
is simply

L(k + 1) = L(k) + d
(i)
k ,

with L(1) = d
(i)
1 .

For the rhs, first note that one can write it as

R(k) = −k +

N∑

i=1

min
{
k, g

(o)
i (k)

}
, (16)
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where g(o)
i (k) is the family of integer sequences defined as

g
(o)
i (k) =

{
d

(o)
i + 1 ∀i 6 k

d
(o)
i ∀i > k

.

Now, let us introduce Gk (p) =
∑N
i=1 δp,g(o)i (k)

, that is, the number of indices i for

which g(o)
i (k) = p. Then, from (16) follows that

R(k) = −k +

k∑

p=1

pGk (p) + k

N∑

p=k+1

Gk (p) , (17)

hence

R(1) = N − 1−G1 (0) , (18)

where we used the fact that
∑N
p=0Gk (p) = N .

Furthermore, let us introduce the following notations:

∆Gk (p) ≡ Gk (p)−Gk−1 (p)

G̃k (q) ≡
q∑

i=0

Gk (i) .

Then, after some simple manipulations, from (17) it follows that

R(k)−R(k − 1) = N − 1− G̃k−1 (k − 1)

+

k−1∑

p=1

p∆Gk (p) + k

N∑

p=k

∆Gk (p) . (19)

Finally, notice that ∆Gk (p) = δ
p,d

(o)
k +1

− δ
p,d

(o)
k

. Substituting it into (19), we obtain:

R(k) =





R(k − 1) +N − G̃k−1(k − 1) ∀d(o)
k < k

R(k − 1) +N − G̃k−1(k − 1)− 1 ∀d(o)
k > k

(20)

Thus, we have turned the problem of finding a recursion relation for R(k) into
the problem of finding G̃k (k). To solve this, first note that

G̃k (k) = G̃k−1 (k − 1) +Gk−1 (k)− δ
k,d

(o)
k

,

with G̃1 (1) = G1 (0) +G1 (1). The above equation constitutes a recursion relation for
G̃k (q). Such a relation can be rewritten as

G̃k (k) = G̃k−1 (k − 1) +G1 (k) + S (k) ,

where

S (k) =

k−1∑

t=2

δ
k,d

(o)
t +1

−
k∑

t=2

δ
k,d

(o)
t
.

Observe that S (k) and G1 (k) can be easily computed while scanning the bds, and
then calculating L(k) and R(k) for each k requires a single operation. Thus, the entire
FR test can be completed in O (N) steps.
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Figure 4. Probability distribution p of the logarithm of weights for an ensemble
of bi-degree sequences on N = 100 nodes. The in-degrees were drawn from a
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6. Discussion

In summary, we have developed a graph construction and sampling algorithm to
construct simple directed graphs realizing a given sequence of in- and out-degrees.
Such constructions are needed in practical modeling situations, ranging from epidemics
and sociology through food-webs to transcriptional regulatory networks, where we are
interested in learning about the statistical properties of the network observables as
determined only by the bi-degree sequence and nothing else.

Unlike existing algorithms such as the Configuration Model, which is affected by
uncontrolled biases and unacceptably long running times except for a very restricted
class of sequences, our algorithm is rejection-free. Also, it guarantees the independence
of the produced samples, unlike MCMC methods, which have unknown mixing
times. While its mathematical underpinnings are nontrivial, the algorithm itself is
straightforward to implement. In principle, our approach can be extended to include
more complex constraints, such as a given sequence of motifs frequencies, but we have
only concentrated on degree sequences since they are, arguably, the most fundamental
of constraints. The algorithm can also be used to sample from given in- and out-
degree distributions, not just sequences: given such distributions, one first samples a
graphical bds from these, then one applies our algorithm to generate digraphs. In this
case, however, the sample weights (7) must be modified to reflect the probability of
the occurrence of the given graphical bds when drawn from the distributions.

Just as in the case of undirected graphs, we can expect the distributions of the
weights for large graphs to be log-normal, as shown in Ref. [11]. As an example,
figure 4 shows the distribution for bi-degree sequences in which the in-degrees follow
a power law with exponent γ = 3 and the out-degrees a Poisson distribution whose
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Figure 5. Mean m (black circles) and standard deviation σ (red squares) of
the distributions of the logarithm of the weights vs. number of nodes N of
samples. In-degrees and out-degrees are both drawn from a power-law distribution
P (d) ∼ d−γ , with γ = 3. The solid black line and the dashed red line are data fit
results, showing thatm and σ follow power-law scaling lawsm ∼ Nα and σ ∼ Nβ .
The values of the exponents, given by the slopes of the lines are α = 1.23± 0.02
and β = 0.81± 0.02.

mean matches the average in-degree. Indeed, the distribution of the weight logarithms
is well approximated by a Gaussian. Similarly the undirected case, we find for all the
examples we studied numerically, that the standard deviation σ of the distributions
of weight logarithms grows slower than the mean m with the number of nodes N ;
see figure 5 showing the scaling of m and σ for bi-degree sequences in which both in-
degrees and out-degrees follow a power law distribution with exponent γ = 3. Thus,
we may expect that typically, in the N → ∞ limit, the rescaled weight distribution
becomes a delta function, making the sampling asymptotically uniform.

Bounds on the complexity of the algorithm could easily be obtained by inspecting
the algorithm, showing a maximum complexity on the order of O(NM) where M is
the total number of edges, M =

∑N
i=1 d̄

(o)
i .

In developing our results, we also provided an efficient way of implementing the
Fulkerson-Ryser test, whose scope of application goes beyond our present algorithm,
as it can be used in any context to determine whether a bi-degree sequence is graphical.
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