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Abstract. Many real-world networks exhibit correlations between the node
degrees. For instance, in social networks nodes tend to connect to nodes of
similar degree and conversely, in biological and technological networks, high-
degree nodes tend to be linked with low-degree nodes. Degree correlations also
a�ect the dynamics of processes supported by a network structure, such as the
spread of opinions or epidemics. The proper modelling of these systems, i.e.,
without uncontrolled biases, requires the sampling of networks with a speci�ed
set of constraints. We present a solution to the sampling problem when the
constraints imposed are the degree correlations. In particular, we develop an
exact method to construct and sample graphs with a speci�ed joint-degree matrix,
which is a matrix providing the number of edges between all the sets of nodes of
a given degree, for all degrees, thus completely specifying all pairwise degree
correlations, and additionally, the degree sequence itself. Our algorithm always
produces independent samples without backtracking. The complexity of the graph
construction algorithm is O(NM) where N is the number of nodes and M is the
number of edges.
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1. Introduction

Complex systems often consist of a discrete set of elements with heterogeneous pairwise
interactions. Networks, or graphs have proven to be a useful representational paradigm
for the study of these systems [1, 2, 3, 4]. The nodes, or vertices, of the graphs
represent the discrete elements, and the edges, or links, represent their interaction. In
empirical studies of real-world systems, however, for reasons of methodology, privacy,
or simply lack of data, frequently there is only limited information available about
the connectivity structure of a network. When this is the case, one has to take a
statistical approach and study ensembles of graphs that conform to some structural
constraints. This statistical approach enables the computation of ensemble averages
of network observables as determined solely by the constraints, i.e., by the speci�ed
structural properties of the graphs. Ensemble modeling of this type is necessary to
determine the relationship between the given structural constraints and the behavior
of the complex system as a whole. Calculating ensemble averages, though, requires
the ability to construct all the graphs that are consistent with the required structural
constraints, a highly non-trivial problem.

Perhaps one of the simplest examples of structural constraints that occur in
data-driven studies of real-world systems is to �x the degree of each node, which
is the number of edges that are connected to, or are incident on the node. For an
undirected graph with N nodes this information is speci�ed by a degree sequence
D = {d1, d2, · · · , dN}, where di is the degree of node i. Similarly, for a directed
graph, a bi-degree sequence (BDS) D =

{(
d−1 , d

+
1

)
,
(
d−2 , d

+
2

)
, · · · , (d−N , d+N

)}
speci�es

the number of incoming and outgoing edges for each node where d−i denotes the in-
degree, and d+i the out-degree, of node i. The situation of most practical interest
is when we demand the graph with a given degree sequence to be a simple graph,
which has the additional constraints that there can be at most one link (in each
direction, if directed) between any two nodes, and that no link starts and ends on
the same node (no self-loops). However, not all positive integer sequences can serve
as the sequence of the degrees of some simple graph. If such a graph does exist,
then the sequence is said to be graphical. Any simple graph (just �graph� from here
on) with the prescribed node degrees is said to realize the degree sequence, and it
is called a graphical realization of the sequence. The two main results used to test
the graphicality of an undirected degree sequence are the Erd®s-Gallai theorem [5]
and the Havel-Hakimi theorem [6, 7]. For directed networks, instead, the main
theorem characterizing the graphicality of a BDS is due to Fulkerson [8]. More
recently, exploiting a formulation based on recurrence relations, new methods were
introduced to implement these tests with a worst case computational complexity that
is only linear in the number of nodes [9, 10, 11]. The advantage of these methods over
others with similar complexity [12] is that they also allow a straightforward algorithmic
implementation.

While the above results provide complete and practical answers to the question
of the graphicality of sequences of integers, they do not su�ce to solve the problem of
constructing graphs with prescribed degrees. One of the main issues with constructing
graphs for the purpose of ensemble modeling is that, except for networks of just a few
nodes, the number of graphs realizing a degree sequence, or other possible constraints,
is generally so large that their complete enumeration is impractical. Therefore, one
has to resort to sampling the space of realizations by randomly generating networks
with prescribed node degrees [9, 11]. For the case of degree-based graph sampling,
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the existing approaches generally fall into two classes that can broadly be referred
to as �rewiring� and �stub-matching�. Rewiring methods start from a graph with
the required degrees and use Markov chain Monte Carlo (MCMC) schemes to swap
repeatedly the ends of pairs of edges to produce new graphs with the same degree
sequence [13, 14, 15, 16]. Stub-matching methods, instead, are direct construction
algorithms that build the graphs by sequentially creating the edges via the joining
of two stubs of two nodes [17, 18, 19, 20, 21]. A stub represents a non-connected,
�dangling half-edge� and a node has as many stubs as its degree. Unfortunately, these
techniques can provide biased results, or are ill-controlled. In the case of the MCMC
method the mixing time is in general unknown and thus one cannot know a priori
the number of swaps needed to produce two statistically independent samples. Proofs
showing polynomial mixing of the MCMC method have been recently developed for
special degree sequences [22, 23, 24, 25], and for the case of balanced realizations of
joint-degree matrices [26]. However, none of these methods allows the determination
of the exponent of the polynomial scaling.

Among the stub-matching methods, the most commonly used algorithm, which
is also ill controlled, is known as the con�guration model. The con�guration model
was proposed in [17] as an algorithmic equivalent of the results from Refs. [27, 28],
themselves based on prior models [29, 30]. The algorithm randomly extracts two stubs
from the set of all stubs not yet connected into edges, and connects them into an edge.
If a multi-edge or a self-loop has just been created, the process is restarted from the
very beginning to avoid biases. However, depending on the degree sequence, this
process can become very ine�cient with an uncontrolled running time, just like the
MCMC method. Alternatively, one can ignore multi-edges and self-loops, and �x them
�by hand� at the end of the process. However, doing so produces signi�cant biases
even in the limit of large system size [31]. Recently, a novel family of stub-matching
algorithms were introduced for both undirected [9] and directed [11] degree sequences
(reproduced here in Appendix A), based on the so-called star-constrained graphicality
theorems [32, 33]. These algorithms generate statistically independent samples with
a worst case polynomial time of O(NM), where M is the total number of edges. The
samples are not generated uniformly. However, their statistical weights are computable
and can be used to obtain results in an importance sampling framework [9, 34, 11, 35].
Note that the solution for the directed sequences also solves the problem for bipartite
sequences because a bipartite graph can always be represented as a directed one in
which one of the two sets of nodes has only outgoing edges, and the other set has only
incoming ones.

Graph construction and sampling becomes even more di�cult when there are
structural constraints of higher order, such as correlations amongst the node degrees.
Degree correlations can be expressed in several ways, for example with the help of
the conditional probability P (d′|d) that a node of degree d will have a neighbor of
degree d′, or more simply, by the average degree of the neighbors of a node with
degree d, d̄′(d) =

∑
d′ d′P (d′|d) [36]. The properties of d̄′(d) characterize the so-called

assortativity of a graph, which is a measure of the tendency of a node to connect to
nodes of similar degree. If d̄′(d) is increasing in d, the graph is degree assortative,
if it is decreasing the graph is degree disassortative, and if it is constant, the graph
is degree uncorrelated. Even more coarse-grained measures of degree correlations are
possible, including the Pearson coe�cient [37], the Spearman coe�cient [38] and the
Kendall coe�cient [39]. These coe�cients assume values ranging from −1, for highly
disassortative graphs, to 1, for highly assortative ones.
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A more precise way to express degree correlations is via the use of a joint-
degree matrix. The joint-degree matrix (JDM) of a given undirected simple graph
is a symmetric matrix whose (α, β) element is the number of edges between nodes
of degree α and nodes of degree β. The dimensions of the JDM are ∆ × ∆, where
∆ is the largest degree of a node in the graph. The degree correlation measures
discussed above specify the correlations only statistically, but they do not �x the
number of edges between nodes of given degrees, whereas the joint-degree matrices
do. In this sense, the relationship between joint-degree matrices and the statistical
degree correlation measures is similar to the relationship between degree sequences
and degree distributions.

Degree correlations have generated considerable interest, as they are known to
a�ect many structural and dynamical properties of graphs and the processes they
support [40, 41, 42, 43, 44, 45, 46, 47]. Nevertheless, even though their importance is
well established, it has heretofore not been possible to perform ensemble modeling of
graphs with prescribed joint-degree matrices. In this Article, we solve this problem by
developing an algorithm based on the stub-matching method to construct and sample
ensembles of graphs with a speci�ed joint-degree matrix.

2. Mathematical foundations

2.1. Graphicality of JDMs
The problem of graphicality for JDMs asks whether a speci�ed symmetric matrix can
be the JDM of a simple graph. Our starting point is an Erd®s-Gallai-like theorem
that gives the requiements for a JDM to be graphical [48, 49, 50].

Before stating the theorem, though, note that a JDM speci�es uniquely the degree
sequence of the graphs that realize it [48]. Given a JDM J , the number of nodes with
degree α is

|Vα| = 1

α


Jαα +

∆∑

β=1

Jαβ


 ,

where Vα is the set of nodes, or degree class, with degree α. As a general rule of
notation we will use lowercase Greek letters to indicate degree values and lowercase
Latin letters for node indices. In the equation above the sum of each row α of J is
the number of connections involving nodes of degree α (i.e., all nodes in class Vα).
As each node of degree α has exactly α stubs the total number of nodes of degree
α is given by the notal number of stubs from all nodes in class Vα divided by α.
Moreover, each edge between nodes of the same degree involves 2 stubs. Thus, the
diagonal elements must be double-counted. Note that multiple JDMs can specify
the same degree sequence and thus prescribing a JDM is more constraining than only
prescribing a degree sequence. With the de�nitions above, the necessary and su�cient
conditions for a JDM to be graphical can be stated as follows [48, 49, 50]:
Theorem 1 (JDM graphicality). A symmetric ∆ × ∆ matrix J with non-negative
integer elements is a graphical JDM if and only if:

1) |Vα| is an integer ∀1 6 α 6 ∆,

2) Jαα 6
(|Vα|

2

)
∀1 6 α 6 ∆, and

3) Jαβ 6 |Vα| |Vβ | ∀1 6 α, β 6 ∆ and α 6= β .
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Figure 1. Graphical realizations of a simple JDM, given in (1). Panels (a)
and (d) are degree class representations, while panels (b) and (e) are regular
representations. The color of the edges indicates the subgraph Gαβ they belong
to. Panels (c) and (f) show the corresponding degree-spectra matrices for the two
realizations; they di�er in the bold red entries.

It is important to observe that any graphical realization of a JDM can be
decomposed into the disjoint union of a set of subgraphsGαβ that are bipartite (α 6= β)
with node sets Vα and Vβ and Jαβ edges between them or unipartite (α = β) with
node set Vα and Jαα edges within that set. We are going to call such representation of
a graphical realization a degree class representation. A simple example of a graphical
JDM with N = 10 and ∆ = 4 is given by the matrix:

J =




0 0 0 1
0 0 4 4
0 4 1 3
1 4 3 0


 . (1)

Panels (a) and (b) of Fig. 1 show a graphical realization of J in degree class
representation and regular representation, respectively. Panels (d) and (e) of the same
�gure show another realization of J in the two representations. The color of the edges
indicate the subgraph they belong to. For example, G24 is a bipartite graph between
nodes of degree 2 (V2) and 4 (V4), respectively, having J2,4 = 4 edges drawn in green
color, whereas G33 is unipartite with a single J33 = 1 edge drawn in blue. Note that
while both graphical realizations have the same JDM, they are very di�erent graphs.
To see this, consider the counts n` of cycles C` of length ` (a cycle is a closed path
without repeated nodes). The graph in Fig. 1(b) has n3 = 1, n4 = 2, n5 = 1, n6 = 2,
n7 = 3 and n8 = 3, whereas the one in Fig. 1(e) has n3 = 1, n4 = 1, n5 = 2, n6 = 3,
n7 = 4 and n8 = 1.

Theorem 1 is an existence theorem, just like the Erd®s-Gallai theorem for the
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case of degree sequences, and as such it does not provide an algorithm that can
generate simple graphs with a given JDM. More importantly, we also need an algorithm
that does not exclude classes of graphical realizations of a given JDM, but that can
construct in principle any such realization. The situation is similar to that of degree
sequences. In that case the Havel-Hakimi method [6, 7] is always able to create a
graphical realization of a graphical degree sequence, but cannot construct them all,
i.e., there will be some realizations that can never be built by this algorithm. This
was the reason for the introduction of the notion of star-constrained graphicality in
Refs. [32, 33] and the subsequent construction algorithms in Refs. [9, 11]. Here as
well, we want to have a direct construction algorithm and ultimately an exact sampler
that does not exclude any realization of a JDM. Due to the di�erent nature of the
constraints from the degree-sequence-based case, we need to develop a novel approach.

The idea of the approach is based on the degree class representation above. Since
the edges of the subgraphs Gαβ are disjoint, we could build a graphical realization G
of the JDM J by building all these subgraphs, while respecting the constraints. For
a Gαβ subgraph we know its node set(s) and its total number of edges Jαβ . Consider
then a node v ∈ Vα. We are not given its degree in Gαβ for any β, but we know that
the sum of its degrees within every one of these subgraphs must add up to α. For
example, the sum of the numbers of the purple, green and red edges coming out of node
2 in Fig. 1(b) must add to 4. In addition, we also have the constraints that the sum of
the degrees of one color of all nodes within Vα must equal to the corresponding given
JDM entry. Indeed, for example, the sum of all green edges in Fig. 1(a) or Fig. 1(b)
is J2,4 = 4, for orange is 4, red is 3, etc. Thus, the idea of the algorithm is to �rst
determine the degree of a given color respecting the constraints for all nodes and all
colors, then use our methods introduced earlier [9, 11] (see Appendix A) to build the
Gαβ subgraphs based on the corresponding degree sequences of their nodes. Di�erent
graphical realizations will be obtained from di�erent assignments of color degrees and,
of course, from the di�erent graphical realizations of the same set of degrees. Note
that for the bipartite subgraphs Gαβ we are specifying degree sequences for nodes in
both partitions Vα and Vβ and thus we can use our graph construction method for
directed graphs [11], because a bipartite graph can be represented as a directed graph
if nodes in one partition have only outgoing edges and in the other only incoming
edges. In the following it will be useful to introduce the notion of degree spectra,
representing the degrees of di�erent colors of a node, as described above.

2.2. Degree spectra
Consider a single row α of a graphical JDM J . The information contained in the row
determines the precise number of edges needed between nodes of degree α and nodes
of every degree. In other words, of all the stubs coming from Vα, Jα,1 of them must
end in a node of degree 1, Jα,2 of them must end in a node of degree 2, and so on.
However, these matrix elements do not specify how to distribute these edges within
and between the degree classes. To better specify these connections one introduces
the notion of the degree spectra, which can be conveniently represented as a matrix.
The degree spectrum of a node is the sequence of its degrees towards all the degree
classes, including its own degree class. A degree-spectra matrix S is a ∆ ×N matrix
whose (α, i) element Sαi is the number of edges between node i and degree class α
(the set of nodes of degree α). The ith column of S de�nes the degree spectrum
of node i. Panels (c) and (f) of Fig. 1show two representations of the same JDM
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Figure 2. Schematic for the partial degree sequence problem.

given in Eq. 1. In general, there are many degree spectra matrices that correspond
to the same JDM. As described in the previous section, we employ a two-step process
in order to randomly sample graphs that realize a given JDM. First, we generate a
random degree-spectra matrix from the JDM. Second, we construct a random graph
that realizes the JDM and that obeys or is consistent with the chosen spectra matrix.
This approach creates the need for a method to guarantee that the spectra generated
from a JDM are graphical.

The generation of a graphical degree-spectra matrix proceeds systematically, node
by node. Therefore, at each step, some nodes will have an already �xed number of
links within some of the subgraphs (links of a given color), while for the rest these
numbers will not have been determined yet. Thus, at any time during this process we
have a partial degree sequence of a bipartite graph. As the subgraphs must be simple
graphs (realizable), one must be able to decide whether a partial bipartite degree
sequence is graphical. The su�cient and necessary criterion for the graphicality of a
partial bipartite degree sequence will be given in Theorem 2 below. However, that
will not necessarily mean that the whole JDM J is still realizable, in other words, how
do we know that by guaranteeing the graphicality for a subgraph Gαβ we have not
precluded graphicality of some other subgraph Gγδ, and ultimately of J? The answer
to this question will be given by Theorem 3, later on. Together, these theorems form
the basis for our algorithm to generate graphical degree spectra.

Before proving a theorem that provides a graphicality test for partial bipartite
degree sequences, we need to set some notations. Let A, B, H and K be four sets of
nodes:

A =
{
a1, a2, · · · , a|A|

}
B =

{
b1, b2, · · · , b|B|

}
with A ∩B = ∅

H =
{
h1, h2, · · · , h|H|

}
K =

{
k1, k2, · · · , k|K|

}
with H ∩K = ∅

and let U = A ∪ B and V = H ∪ K (see Fig. 2). The sets can be of di�erent
size, but neither U nor V can be empty. Now, let P =

{
p1, p2, · · · , p|A|

}
and

Q =
{
q1, q2, · · · , q|H|

}
be two given sequences of integers. They will represent the

partial bipartite degree sequences that have already been �xed by the algorithm up
to that point. The degrees of the other nodes, speci�cally those in the sets B and
K, are not yet speci�ed. What is speci�ed is the total number of edges ε in the
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bipartition, i.e., the total number edges running between the sets U and V . Then,
the partial bipartite degree sequence triplet (P,Q, ε), hereafter simply called a triplet,
is graphical if there exists a bipartite graph on U and V with ε edges and degree
sequences D(U)

∣∣
A
= P and D(V )

∣∣
H

= Q. In other words, the bipartite graph must
be such that the nodes in A have degree sequence P and those in H have degree
sequence Q. The partial degree sequence problem is to decide whether one can choose
the degrees of the nodes in the sets B and K such that the above constraints are
satis�ed and the bipartite degree sequence D is graphical.

Since the graph realizing a triplet is bipartite, the number of edges ε equals the
number of stubs in either set of nodes:

ε =

|U |∑

i=1

dui =

|V |∑

i=1

dvi .

The imposed partial sequences P and Q prescribe a certain number of stubs in the
�rst |A| nodes of U and in the �rst |H| nodes of V . Let these be P =

∑|A|
i=1 pi and

Q =
∑|H|

i=1 qi, respectively. Then, the set B must contain exactly ε−P stubs; similarly,
the set K must contain exactly ε−Q stubs. With these considerations, we �rst de�ne
the concept of a balanced realization of a triplet. Let µ ≡ ε−P

|B| and ν ≡ ε−Q
|K| . A

realization of a triplet is de�ned to be balanced if and only if the degree of any node
in B is either bµc or dµe, and the degree of any node in K is either bνc or dνe. Notice
that this means that if µ or ν are integers, then all the nodes in B or K must have
exactly degree µ or ν, respectively. Conversely, if they are not integers, then the
degrees of any two nodes in B or in K, respectively, can di�er at most by 1. That
is, a realization is balanced if and only if all the degrees of the nodes that one is free
to choose (those in B and K) are as close as possible to their averages µ and ν. The
de�nition can be equivalently formalized by introducing a functional f acting on B
and K:

f (B) ≡
|B|∑

i=1

b|dbi − µ|c and f (K) ≡
|K|∑

i=1

b|dki − ν|c .

Then, a realization of a triplet is balanced if and only if both f (B) and f (K) vanish.
An important theorem about the graphicality of triplets can now be proven.

Theorem 2. The triplet (P,Q, ε) is graphical if and only if it admits a balanced
realization.

Proof. Su�ciency is obvious. If the triplet admits any realization, balanced or not, it
is graphical by de�nition.

To prove necessity, suppose the triplet is graphical. Then, it admits a realization
G. If G is balanced, then there is nothing to do. Conversely, if G is not balanced,
then f (B), f (K), or both, are greater than 0. Without loss of generality, assume that
f (B) > 0. Then, there exists a node bi ∈ B such that either dbi < bµc or dbi > dµe.
Again without loss of generality, assume that dbi < bµc (the other cases are treated
analogously). Then, since the number of stubs within B is �xed, there must exist a
node bj ∈ B such that dbj > bµc and thus dbj > dbi . But then, there must exist a
node vk ∈ V such that vk is connected to bj but not to bi. Now, remove the edge
(vk, bj) and replace it with (vk, bi). This yields a di�erent realization with the same
degrees for the nodes in V , and in which f (B) is decreased by at least 1, as the
degrees of B moved towards the balanced condition. The procedure can be repeated
until f (B) = 0, resulting in a balanced realization.
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A key consequence of this theorem is the following.
Corollary 1. Let (P,Q, ε) be a graphical triplet, and let x be a node in B or in K.
If there is a realization of the triplet in which dx = α and another in which dx = β,
with α < β, then for all γ with α 6 γ 6 β there exists a realization in which dx = γ.

Proof. Without loss of generality, assume x ∈ B. Then, there are several cases,
each determined by the relative values of α, β and bµc. The most general case is
α < bµc < β, so consider only this situation. Start from the realization with dx = β.
Repeated applications of the method in the proof of Theorem 2 will eventually yield
a realization in which dx = bµc. For each step, the degree of x will have decreased
by 1. Therefore, one realization of the triplet will have been found with dx = γ for all
bµc 6 γ 6 β.

Now, start from the realization with dx = α. Applying the same step from the
proof of Theorem 2 repeatedly will eventually yield a realization in which dx = bµc.
For each of these steps, the degree of x will have increased by 1. Therefore, one
realization of the triplet will have been found with dx = α for all α 6 γ 6 bµc.

Notice that, given a graphical triplet, Corollary 1 also implies the existence of
minimum and maximum allowed degrees for each node whose degree has not yet
been �xed in that triplet (namely, in B and K). That is, a realization of the triplet
exists with a node having either its minimum or maximum degree, or any degree
between these two values. Of course, the value of the minimum and maximum degree
will depend on which degrees have been �xed up to that point, so these need to
be computed on the �y. How to calculate these degree bounds will be explained in
Subsection 3.1.

2.3. Building a degree-spectra matrix
Corollary 1 suggests the possibility of a direct, sequential way to build a degree-spectra
matrix from a JDM. However, building the degree-spectra matrix node by node is a
local process, which guarantees via Theorem 2 only that the bipartite graph in which
the node whose degree spectrum is being set resides is graphical. There is a global
constraint, however, on every node, namely that the sum of their degree spectra must
add up to the degree of the class they belong to. We have to make sure that the
local construction process also respects the global constraints, i.e., it is feasible with
it. The theorem below will show that this sequential construction process is feasible,
and just as importantly, all graphical realizations of a JDM J can be constructed in
this way, i.e., all graphical degree-spectra matrices can be obtained by this sequential
construction process.
Theorem 3. Let S be the subset of all the nodes with �xed spectra; then, there exists
a realization of a JDM J consistent with the �xed spectra if and only if for every (α, β)
pair with α, β ∈ {1, . . . ,∆} there exists a graph Gαβ with Jα,β edges also satisfying
the �xed spectra of S.
Proof. Necessity is obvious. If there exists a realization of J satisfying the spectra,
then each subgraph between any pair of degree classes both satis�es the spectra and
has the right number of edges.

To prove su�ciency, assume that we have a �xed degree spectrum for all the
nodes in S and we have guaranteed the graphicality of all the subgraphs Gαβ . They
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have the right number of edges Jα,β and their nodes satisfy the �xed spectra speci�ed
in the subset S. Since we have guaranteed graphicality for all the Gαβ subgraphs with
these constraints, let us consider some graphical realization for each such subgraph
and consider their union graph G. If the �free� nodes, i.e., those without a �xed
spectrum, have all the correct degree in G (i.e., every node v ∈ Vα has dv = α for all
α), then there is nothing to do. Now, assume they don't. Since the total number of
edges in each Gαβ is correct by hypothesis, there must exist a degree α and two free
nodes v and w belonging to Vα such that dv < α and dw > α. Thus, there must exist
a node u connected to w but not to v. Then, erase the edge (u,w), and replace it with
(u, v). This leaves the numbers of edges in all Gαβ unchanged, and does not change
the degree spectrum of u, because v and w belong to the same degree class. Repeating
this procedure results eventually in all the nodes having the correct degree.

Theorem 3 is fundamentally important as it justi�es a systematic, node-by-node
approach in building a graphical degree-spectra matrix. In fact, so long as one
guarantees the possibility of subgraphs with the correct number of edges, a partial
degree-spectra matrix maintains the graphicality of the JDM.

The only detail left is specifying how to choose the numbers that form the degree
spectra. Fortunately, this is straightforward. As mentioned in the previous Subsection,
an implication of Corollary 1 is the existence of minimum and maximum allowed
degrees for nodes in partial degree sequences. Let them be m (minimum) and M
(maximum). But a partial degree sequence is nothing else than a partially built
degree spectrum, if one recognizes the node sets U and V as two degree classes. Then,
a condition that must be satis�ed in building a degree-spectra matrix is that any new
number chosen to augment a partially built degree spectrum has to be within these
bounds. However, one must also consider that if a node belongs to a certain degree
class, it must have the correct total degree.

To state both conditions, assume the degree spectrum of node v ∈ Vα is being
built. Let Γ be the set of degree classes for which a spectrum element has already
been chosen, and let Sβv be the element to determine next. Then, a valid value k for
Sβv must satisfy the two conditions

mβ 6 k 6 Mβ (2)∑

η/∈(Γ∪β)

mη 6 α− k −
∑

η∈Γ

Sηv 6
∑

η/∈(Γ∪β)

Mη . (3)

Below, in Subsection 3.1 we describe how to compute the min and max values for
degree spectra elements.

3. The algorithm

3.1. Description
We are now ready to describe our JDM sampling algorithm. The algorithm is
composed of two parts. The �rst is a spectra sampler that randomly generates degree-
spectra matrices from a graphical JDM J :
(i) Initialize i = 1.
(ii) Set α = 1.
(iii) Let l be the number of the residual, unallocated stubs of node i. If l 6= 0:
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Vα


…
 : fully fixed degree    
spectrum


: partially fixed degree 

spectrum


: “free” nodes


…



…
v


…



…
Vβ


Jαβ
 balanced

Gαβ


Figure 3. Sequentially determining graphical degree spectra consistent with a
given JDM J .

(a) If Jdi,α 6= 0:
1. For all α 6 β 6 ∆, if Jdi,β 6= 0, �nd Mk and mk; otherwise, set

mk = Mk = 0.
2. Compute t =

∑∆
β=α+1 mβ and T =

∑∆
β=α+1 Mβ .

3. Find the actual minimum and maximum allowed for the degree-spectrum
element: r = max {mα, l − T} and R = min {Mα, l − t}.

4. Extract an integer Sα,i uniformly at random between r and R.
(b) Increase α by 1, and go to step (iii).

(iv) Increase i by 1. If i 6 N , go to step (ii).
To �nd the values of m and M in step (iii).a.1 above, consider the degrees of

the nodes belonging to Vα and Vβ in Gαβ . In the formalism of Subsection 2.2, the
already �xed spectra elements are equivalent to the sequences P and Q. Then, to test
the viability of a given value as a degree-spectrum element, assign it to the element
being determined, complete the degree sequence making it balanced, and test it for
graphicality, see Fig. 3. If the sequence is graphical, then the triplet has a balanced
realization, which by Theorem 2 is a necessary and su�cient condition for the existence
of a subgraph corresponding to the spectrum element being determined. If Gαβ is
unipartite, the graphicality test can be done using the fast method described in [9].
The situation is marginally di�erent if Gαβ is bipartite. In this case, as previously
mentioned, the degree sequence can be built as a BDS in which nodes of degree α only
have incoming edges, and nodes of degree β only have outgoing ones. This sequence
can then be tested with the fast directed graphicality test described in [11].

Thus, to �nd the minimum value m one can simply run a sequential test, checking
for valid spectrum values from 0 onwards. The �rst successful value is m. Then, to
�nd M , use bisection to test all the values from m + 1 to the theoretical maximum,
looking for the largest number allowed. Clearly, the theoretical maximum at that
stage is the degree of the class the node belongs to minus the sum of the already �xed
spectra values for that degree.

These considerations also clarify the nature of the second part of the algorithm,
which samples realizations of the JDM from an extracted degree spectra matrix.
Summarizing,
• JDM realizations can be decomposed into a set of independent unipartite and
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bipartite graphs.
• The degree spectra de�ne the degree sequences of the component subgraphs.

Then, to accomplish the actual sampling, extract the degree sequences from the
degree spectra and use them in the graph sampling algorithms for undirected and
directed graphs presented in [9, 11] and in here in Appendix A. Every time a sample
is generated, it constitutes a subgraph of a JDM realization. All that is needed in the
end is simply to list the edges correctly, since the graph realizing the JDM is the union
of all the unipartite and bipartite subgraphs into which it has been decomposed.

3.2. Sampling weights
Our algorithm does not extract all degree-spectra matrices from a JDM with the same
probability. However, the relative probability for the extraction of each spectra matrix
is easily computed, and it can be used to reweight the sample and obtain unbiased
sampling. If every new element of a degree-spectra matrix is extracted uniformly at
random between r and R, its probability of being chosen is simply 1

R−r+1 . Therefore,
the probability of extracting a given spectra matrix S is p (S) =

∏m
i=1

1
R−r+1 , where

m is the total number of elements extracted. Then, an unbiased estimator for a
network observable Q on an ensemble of Z spectra matrices can be computed using
the weighted average

〈Q〉 =
∑Z

i=1 Qiwi∑Z
i=1 wi

. (4)

In the expression above, Qi is the value that Q assumes on the ith sampled matrix.
Indicating by rj and Rj the values that r and R assume for the jth matrix element
extracted, the weights are

wi =

m∏

j=1

(Rj − rj + 1) . (5)

Of course, besides the spectra matrix, every subgraph has its own sampling
weight. Thus, the total weight of a single JDM sample is the product of the
corresponding spectrum weight and all the subgraph weights. To describe the
distribution of the sample weights, �rst recall that the individual subgraph weights
are log-normally distributed [9, 11]. Thus, as the sample weights are their product, we
expect them to be log-normally distributed too. Also, for large JDMs, where ∆2 À 1,
them factors in Eq. 5 are e�ectively random. Thus, our expectation is that the spectra
weights are log-normally distributed as well. To verify this, we extracted the JDM of
a random scale-free network with 1000 nodes and power-law exponent of 2.5, and used
it to generate an ensemble of 105 degree spectra matrices and one of 108 JDM samples
of a single spectra matrix. Figure 4 shows that the histograms of the logarithms of
spectra matrix weights and sample weights are well approximated by a Gaussian �t,
supporting our assumptions.

A simple and small example is provided in Appendix B. There, we analytically
compute the JDM ensemble averages of the local clustering coe�cients of nodes of all
degrees, based on unweighted sampling and also based on weighted sampling, with the
weights provided by the algorithm. In table B1, we show the results of simulations
using our algorithm, taking into account the sample weights (as described above),
and simply computing the averages of the clustering coe�cients over the samples
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Figure 4. Log-normal distribution of weights. The top panel shows the histogram
of the natural logarithms of the weights for an ensemble of 105 degree-spectra
matrices; the bottom panel shows the histogram for an ensemble of 108 sample
weights. Both distributions (solid black lines) are well �tted by a Gaussian curve
(dashed red line).

generated. The results between theoretical and simulated measures agree very well.
The di�erences between weighted and unweighted versions can be also appreciated,
and while they are small in this example, they are measurable and need to be taken
into account in general.

3.3. Computational complexity
To determine the computational complexity of the algorithm, �rst note that the main
cost in creating a spectra matrix comes from the repeated graphicality tests. Let A
be the number of non-empty degree classes in the JDM

A = |{α : Vα 6= ∅}| .
Then, for each of the NA non-trivial elements in the degree-spectra matrix, A tests
are needed, each with a computational complexity of the order of the number of nodes
in the corresponding degree class. Thus, the total computational complexity for the
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spectra construction part of the algorithm is

CS = O

N

∆∑
α=1

∆∑

β=α

|Vβ |

 . (6)

Notice that in our treatment one is free to choose the order of the degree classes. Thus,
to minimize the complexity, one can simply determine the degree-spectra elements
in descending order of degree class size. Then, the worst case corresponds to the
equipartition of the nodes amongst degree classes, |Vα| = N

A . In this case, it is

CS = O
(
NA2N

A

)
= O (

N2A
)
,

which reduces to
CS = O (

N3
)

if the number of degree classes is of the same order as the number of nodes.
A more precise estimate for a given JDM can be obtained by rewriting Eq. 6 as

CS = O

N2

∆∑
α=1

∆∑

β=α

P (β)


 ,

where the degree distribution P (d) = |Vd| /N is the probability that a randomly chosen
node has degree d. It is easy to see, then, that the worst case is unlikely to occur.
Consider for instance systems of widespread insterest, such as scale-free networks, for
which P (d) ∼ d−γ with γ > 2. Then, in the limit of large networks, the equation
above becomes

CS = O
(
N2

∫ ∞

1

dx

∫ ∞

x

dk (γ − 1) k−γ

)
= O

(
N2

γ − 2

)
= O (

N2
)
.

Thus, in this case, the complexity leading order for spectra matrix extraction is only
quadratic.

Given a degree-spectra matrix, to construct a JDM realization one then needs to
build O (

A2
)
subgraphs, each with O (

N
A

)
nodes and O (

M
A

)
edges. For each subgraph,

the computational complexity is of the order of the number of nodes multiplied by the
number of edges. Thus, the total sampling complexity is O (

A2N
A

M
A

)
= O (NM).

Therefore, the total complexity of the graph construction part of our method is
O (

N2
)
for sparse networks, and O (

N3
)
for dense ones. Once more, we do not expect

the worst case complexity to occur often. For example, in the already mentioned
case of scale-free networks, which are always sparse [51], the total complexity of
our algorithm would only be quadratic. A less e�cient sampling method has been
developed recently [52], but it is based on backtracking, producing results containing
biases that are uncontrolled and that cannot be estimated.

4. Conclusions

In summary, we have solved the problem of constrained graphicality when degree
correlations are speci�ed, developing an exact algorithm to construct and sample
graphs with a speci�ed joint-degree matrix. A JDM speci�es the number of
edges that occur between degree classes of nodes (nodes of given degrees), and
thus completely determines all pairwise degree correlations in its realizations. Our
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algorithm is guaranteed to successfully build a random JDM sample in polynomial
time, systematically, and without backtracking. It is also guaranteed to be able
to build any of the graphical realizations of a JDM. Each graph is constructed
independently and thus there are no correlations between samples. Although the
algorithm does introduce a sample bias, the relative probability for the construction
of each sample is computable, which allows the use of weighted averages to obtain
unbiased sampling (importance sampling). However, importance sampling is only
exact in the limit of an in�nite number of samples. This raises the issue of convergence.
The lognormal distribution of weights makes convergence slow, but for small- to
medium-sized networks good accuracy can be achieved, and quantities computed as if
from uniform sampling. Improving the speed of convergence is a challenging problem,
partly because it depends on the constraining JDM, and will be addressed in future
publications.

Degree correlations in real-world systems have been widely observed. Social
networks are known to be positively correlated, and the concept of assortativity was
known to the sociological literature before it was employed in applied mathematics.
Technological networks are also characterized by particular correlation pro�les.
Moreover, correlations signi�cantly a�ect the dynamics of spatial processes, such as
the spread of epidemics [3]. Thus, with our algorithm, one can model correctly complex
systems of general interest with desired degree assortativity. For the �rst time, this
enables the study of networks in which the correlations are not determined solely
by the nodes' degrees. For instance, there exist many studies about social networks,
consisting of a comparison between some speci�c real-world network and a randomized
ensemble of networks with the same degree sequence or degree distribution. As social
networks are scale-free, these studies often just sample the same sequence or the same
type of power-law sequences to produce null-model results. However, social networks
are assortative, while random scale-free networks are on average disassortative. Thus,
the average correlations of scale-free networks make degree-sequence and degree-
distribution sampling problematic if one is trying to consider a random model of
a social network. Our method allows one to avoid this problem by directly imposing
the correlations, rather obtaining only those imposed by the degree sequence.

Upper bounds on the computational complexity of our algorithm show that in
the worst case it is cubic in the number of nodes. However, we provide a way to
compute the expected worst-case complexity if the degree distribution of the networks
considered is known. This shows that, for commonly studied cases such as scale-free
networks, the maximum complexity is only of the order of N2, making the algorithm
even more e�cient.
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Appendix A. Direct construction of random directed and undirected
graphs with prescribed degree sequence

In order to fully describe our algorithm for sampling graphs with prescribed degree
correlations, we include in this appendix succinct descriptions of our algorithms for
sampling random undirected [9] and directed [11] graphs with a prescribed degree
sequence. Both are used in our algorithm to sample graphs with a prescribed JDM,
and both work by directly constructing the graphs. So long as the prescribed degree
sequence is graphical, both algorithms are guaranteed to successfully construct a
graph without backtracking. They accomplish this by building the graph an edge
at a time, connecting pairs of stubs, maintaining the graphicality of the residual
stubs throughout the construction process. The algorithms make use of our fast
methods for testing the graphicality of degree sequences, which are also described
below. The worst case complexity is O (N) for the graphicality tests, and O (NM)
for both sampling algorithms. Both algorithms generate biased samples, but we also
state the relative probability of generating a sample, which can be used to calculate
unbiased statistical averages. See our previous publications for proof of the correctness
of these algorithms [9, 11]; they are stated without proof or detailed explanation here.

Appendix A.1. Undirected graphs
A nonincreasing sequence of integers D = {d1, d1, . . . , dN} is graphical if and only if∑N

i=1 di is even, and Lk 6 Rk for all 1 6 k < N , where Lk and Rk are given by the
recurrence relations

L1 = d1 (A.1)
Lk = Lk−1 + dk (A.2)

and
R1 = N − 1 (A.3)

Rk =

{
Rk−1 + xk − 2 ∀k < k∗

Rk−1 + 2(k − 1)− dk ∀k > k∗ (A.4)

and we de�ned the crossing indices xk = min {i : di < k}, and k∗ =
min {i : xi < i+ 1}. Thus, to test the graphicality of D:
(i) Sum the degrees to determine if

∑N
i=1 di is even. If false, then stop; D is not

graphical. If true, continue. While summing the degrees, also calculate the
crossing indices xk for each k and determine k∗.

(ii) Test if L1 ≤ R1 = N − 1. If false, then stop; D is not graphical. If true, set k = 2
and continue.

(iii) Test if Lk ≤ Rk. If false, then stop; D is not graphical. If true, increase k by one
and repeat. Continue until k = N − 1, then stop; D is graphical.
Given a nonincreasing graphical degree sequence D, a random undirected graph

that realizes D can be constructed by:
(i) To each node, assign a number of stubs equal to its degree.
(ii) Choose a hub node i. Any node can in principle be chosen, for example, the node

with the largest degree.
(iii) Create a set of forbidden nodes X, which initially contains only i.
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(iv) Find the set of allowed nodesA to which i can be linked preserving the graphicality
of the remaining construction process. To �nd A, �rst determine the maximum
fail degree κ using the method described below. Then A will consist of all nodes
j /∈ X that have remaining degree greater than κ.

(v) Choose a random node m ∈ A and connect i to it.
(vi) Reduce the value of di and dm in D by 1, and reorder it.
(vii) If m still has unconnected stubs, add it to the set of forbidden nodes X.
(viii) If i still has unconnected stubs, return to step (iv).
(ix) If nodes still have unconnected stubs, return to step (ii).

To determine the maximum fail degree in a degree sequence D being sampled,
build the residual degree sequence D′, by connecting the hub node i with remaining
degree di to the di− 1 nodes with the largest degrees that are not in the forbidden set
X and reducing the elements of D accordingly. Then, compute the graphicality test
inequalitites. Each inequality potentially yields a fail-degree candidate, depending on
the values of Lk and Rk. For each value of k there are only 3 possibilities:
(a) Lk = Rk

(b) Lk = Rk − 1

(c) Lk 6 Rk − 2

In case (a), the degree of the �rst non-forbidden node whose index is greater than k is
the fail-degree candidate. In case (b), the degree of the �rst non-forbidden node whose
index is greater than k and whose degree is less than k+1 is the fail-degree candidate.
In case (c), there is no fail-degree candidate. The sequence of candidate nodes is
non-decreasing until the fail-degree is found. Thus, one can stop the calculation when
either the current fail-degree candidate is less than the previous one, or when a case (a)
happens.

This algorithm generates graph samples biasedly. However, the relative
probability of generating a particular sample µ is

pµ =

m∏

i=1

d̄i!

d̄i∏

j=1

1∣∣Aij

∣∣ , (A.5)

where d̄i is the residual degree of node i when it is chosen as a hub, m is the total
number of hubs used, and Aij is the allowed set for the jth link of hub i. Thus, an
unbiased estimator for a network observable Q for any target distribution P is the
weighted average

〈Q〉 =
∑M

i=1 QµiwµiP (µi)∑M
i=1 wµiP (µi)

, (A.6)

where M is the number of samples and wµi = p−1
µi

. For uniformly sampling the
networks, P is constant and it cancels out of the formula.

Appendix A.2. Directed graphs
A bi-degree sequence (BDS) D =

{(
d−1 , d

+
1

)
,
(
d−2 , d

+
2

)
, . . . ,

(
d−N , d+N

)}
of integer pairs,

ordered so that the �rst elements of each pair form a non-increasing sequence, is
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graphical if and only if
∑N

i=1 d
−
i =

∑N
i=1 d

+
i , and Lk 6 Rk for all 1 6 k 6 N − 1,

where Lk and Rk are given by the recurrence relations
L1 = d−1 (A.7)
Lk = Lk−1 + dk (A.8)

and
R1 = N − 1−G1 (0) (A.9)

Rk =

{
Rk−1 +N − Ḡk−1 (k − 1) ∀d+k < k
Rk−1 +N − Ḡk−1 (k − 1)− 1 ∀d+k > k

, (A.10)

and Gk and Ḡk are de�ned as follows. Let

gi (k) =

{
d+i + 1 ∀i 6 k
d+i ∀i > k

. (A.11)

Then

Gk (p) =

N∑

i=1

δp,gi(k) , (A.12)

where δ is the Kronecker delta, and Ḡ is given by the recurrence relation
Ḡ1 (1) = G1 (0) +G1 (1) (A.13)
Ḡk (k) = Ḡk−1 (k − 1) +G1 (k) + S (k) , (A.14)

where

S (k) ≡
k−1∑
t=2

δk,d+
t +1 −

k∑
t=2

δk,d+
t
. (A.15)

To e�ciently test the graphicality of a BDS D,
(i) Sum the in- and out-degrees to determine if

∑N
i=1 d

−
i =

∑N
i=1 d

+
i . If false, then

stop; D is not graphical. If true, continue. While summing the degrees, also
calculate Lk for each k.

(ii) Compute G1 (k) for each k.
(iii) Compute S (k) for all k:

(a) Initialize S (k) to 0 for all k. Set i = 2.
(b) If d+i > i, decrease S

(
d+i

)
by 1.

(c) If d+i + 1 > i, increase S
(
d+i + 1

)
by 1.

(d) Increase i by 1. If i 6 N , repeat from step (b).
(iv) Test if L1 ≤ R1. If false, then stop; D is not graphical. If true, set k = 2 and

continue.
(v) Test if Lk ≤ Rk. If false, then stop; D is not graphical. If true, increase k by one

and repeat. Continue until k = N − 1, then stop; D is graphical.
Given a graphical BDS of integer pairsD in lexicographic order, a random directed

graph that realizes D can be constructed by
(i) Assign in-stubs and out-stubs to each node according to its degrees.
(ii) De�ne as current hub the lowest-index node i with non-zero out-degree.
(iii) Create a set of forbidden nodes X, which initially contains i and all nodes with

zero in-degree.
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(iv) Find the set of allowed nodes A to which an out-stub of i can be connected without
breaking graphicality. To �nd A, �rst determine the maximum fail in-degree κ
using the method described below. Then A will consist of all nodes j /∈ X that
have remaining in-degree greater than κ.

(v) Choose a random node m ∈ A and connect an out-stub of i to one of its in-stubs.
(vi) Reduce the value of d+i and d−m in D by 1, and reorder it accordingly.
(vii) Add m to the set of forbidden nodes X.
(viii) If i still has unconnected out-stubs remaining, return to step (iv).
(ix) If nodes still have unconnected out-stubs, return to step (ii).

The following simple procedure can be used to e�ciently �nd the fail-in-degree
in step (iv) of the sampling algorithm.
(i) Create a new BDS D′ obtained from D by reducing the in-degrees of the �rst

d+i − 1 non-forbidden nodes by 1, and reducing the out-degree of i to 1.
(ii) If i = 1, set k = 2; otherwise, set k = 1.
(iii) Compute Lk and Rk of the BDS D′.
(iv) If Lk 6= Rk: increase k by 1; if k = N , there is no fail-in-degree, and all the

non-forbidden nodes are allowed, so stop; otherwise, go to step (iii).
(v) Find the �rst non-forbidden node in D′ whose index is greater than k.
(vi) Identify this node in the original BDS D. Its in-degree is the fail-in-degree. Stop.

As in the case of the sampling algorithm for undirected graphs, this algorithm
generates directed graph samples biasedly. However, an unbiased estimator for a
network observable Q for any target distribution P is the weighted average given by
Eq. A.6. In this case the weights are

wµ =
ν∏

i=1

d+
i∏

j=1

∣∣Aij

∣∣ , (A.16)

where ν is the total number of hubs used,
∣∣Aij

∣∣ is the size of the allowed set immediately
before placing the jth connection coming from the ith hub, and d+i is the out-degree
of the ith node chosen as a hub. Note that, unlike the case for undirected networks,
there is no factorial combinatorial factor in the weights. This is because while the
particular sequence of hub nodes chosen depends on the links placed, every node with
non-zero out-degree will be selected, sooner or later, as the hub. Therefore, all the
samples produced would have an extra, identical, multiplicative factor of

∏N
i=1

1
d+
i !
.

As only the relative probabilities are needed for estimating an observable, and this
factor is the same for every possible sample, it is eliminated from the formula for the
weights.

Appendix B. An explicit example

To illustrate the sampling mechanism and the di�erence between weighted and
unweighted estimation, we consider the realizations of the JDM

J =




0 0 0
0 2 4
0 4 1


 , (B.1)
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"Pentagon" graph "Hexagon" graph

"Bow tie" graph

Figure B1. Possible realizations of the JDM in Eq. B.1, up to isomorphism.

and explicitly compute the average local clustering coe�cients 〈cd〉 of the nodes of
degree d, for all values of d. This JDM induces the degree sequenceD = {2, 2, 2, 2, 3, 3},
and, up to isomorphism, has only three possible realizations, shown in Fig. B1. From
the �gures, it is easy to see that, for the pentagon graphs, 〈c2〉P = 1/4 and 〈c3〉P = 1/3.
Also, for the hexagon graphs 〈c2〉H = 〈c3〉H = 0, while for the bow tie graphs 〈c2〉B = 1
and 〈c3〉B = 1/3.

Appendix B.1. Unweighted estimate
To calculate the theoretical results for the unweighted case, we need to consider the
probability with which our algorithm generates each degree-spectra matrix from J .
To this purpose, �rst note that there are several degree-spectra matrices whose
realizations are all pentagon graphs. Also, all the hexagon and bow tie graphs have
the same degree-spectra matrix

SHB =




0 0 0 0 0 0
1 1 1 1 2 2
1 1 1 1 1 1


 . (B.2)

This allows us to compute just the probability of generating S, as all the other matrices
will yield the same contribution to 〈c2〉P and 〈c3〉P .

Our method chooses the elements of the degree-spectra matrix S being created in
a systematic way, node by node. As there are no nodes of degree 1, all the element in
the �rst row of the matrix are �xed to 0. Then, the �rst element to choose is S2,1, that
is, the number of edges between node 1 and nodes of degree 2. The possible choices for
this element are 0, 1, and 2. Choosing 0 or 2 will result necessarily in a degree-spectra
matrix whose realizations are all pentagon graphs. In fact, from Fig. B1 one can see
that, amongst the realizations of J , the pentagon graphs are the only ones in which a
node of degree 2, such as node 1, has either no edges or 2 edges with nodes of degree 2.
Thus, choosing the value of S2,1 with uniform probability, at this stage one generates
pentagon graphs with probability 2/3.



Exact construction and sampling of graphs with prescribed degree correlations 21

The remaining choice, S2,1 = 1, happens with probability 1/3. In this case, S3,1

is forced to be 1, since the elements in the �rst column of S must sum up to the degree
of the node 1, which is 2. The next element to determine is then S22 . Similarly to the
previous case, the possible values are 0, 1, and 2. Choosing 0 or 2 will always result in
pentagon graphs, whose probability of being generated increases by 1/3 · 2/3 = 2/9.

Choosing S2,2 = 1, which occurs with total probability 1/3 · 1/3 = 1/9, forces
S3,2 = 1. The next value to determine is that of S2,3. As before choosing 0
or 2 yields pentagon graphs, whose total probability of being generated increases
by 1/3 · 1/3 · 2/3 = 2/27.

The choice of S2,3 = 1, which has a total probability 1/3 · 1/3 · 1/3 = 1/27 of
happening, implies that S2,3 = 1. Then, the degree-spectra matrix being built can
only be SHB . In fact, as it is evident from Fig. B1, the only graphs realizing J in
which at least 3 nodes of degree 2 are linked exactly to one other node of degree 2 and
one of degree 3, are hexagon and bow tie graphs.

This shows that the degree-spectra matrix SHB occurs with probability 1/27;
conversely, degree-spectra matrices yielding pentagon graphs occur with probability
26/27.

The next step in our evaluation is to compute the probabilities of generating
any of the hexagon and bow tie graphs from the degree-spectra matrix SHB . The
graph-construction part of our algorithm consists in generating all the Gαβ subgraphs
between nodes of degree α and nodes of degree β. In the current example, there are
three such subgraphs, namely G2,2, G2,3, and G3,3. Of these, G3,3 consists simply in
a single edge between the two nodes of degree 3. Thus, the only variability is given
by the choices for the two remaining subgraphs.

The possible realizations ofG2,2 are illustrated in panels (a), (b) and (c) of Fig. B2.
Each is determined by the placement of a single edge, which forces the choice for the
remaining one. Thus, each is produced by our algorithm with the same probability
of 1/3. Similarly, each of the possible realizations for G2,3, shown in panels (d) to (i)
of Fig. B2, is determined by the edges incident to node 5 or node 6. As these are
chosen by our algorithm fully randomly, all the possible realizations occur with the
same probability of 1/6. The particular type of graph that is produced depends on
the speci�c realizations of the subgraphs. As there are 3 realizations for G2,2 and
6 for G23 , the total number of graphs is 18. Of these, 1/3 are bow tie graphs, and
the remaining 2/3 are hexagon graphs. In particular, the bow tie graphs correspond
to the subgraph choices (a,d), (a,i), (b,e), (b,h), (c,f) and (c,g), as it is easy to see
from Fig. B2. Note that this indicates that, for this speci�c degree-spectra matrix,
the sampling is already uniform.

It is possible, now, to compute the average clustering coe�cients for the
unweighted estimation. To do so, �rst compute their average over the realizations
of SHB :

〈c2〉HB =
1

3
· 1 + 2

3
· 0 =

1

3
(B.3)

〈c3〉HB =
1

3
· 1
3
+

2

3
· 0 =

1

9
. (B.4)

Then, knowing that SHB is sampled with probability 1/27, and the remaining degree-
spectra matrices always yield pentagon graphs, it is

〈c2〉unweighted =
1

27
· 1
3
+

26

27
· 1
4
=

41

162
(B.5)
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Figure B2. Degree-class subgraphs realizing the degree-spectra matrix SHB of
Eq. B.2. Panels (a), (b) and (c) show the possible realizations of G2,2; panels (d)
to (i) show the possible realizations of G2,3.

〈c3〉unweighted =
1

27
· 1
9
+

26

27
· 1
3
=

79

243
. (B.6)

Appendix B.2. Weighted estimate
In order to obtain an analytical result for the weighted estimate, rather than computing
the probability of occurrence of each degree-spectra matrix as sampled by our
algorithm, we need to compute their actual number. From the previous subsection,
we already know that all the hexagon and bow tie graphs come from the same degree-
spectra matrix SHB , which is unique. Then, we only need to compute the number of
degree-spectra matrices corresponding to pentagon graphs.

To do so, remember that the �rst choice in the construction of a degree-spectra
matrix from J is the value of the element S2,1. If S2,1 = 0 or S2,1 = 2, then we are
guaranteed to get a pentagon graph. However, while each of these two choices �xes
the value of S3,1, we are still free to select a value for the next �free� element, S2,2.
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Start

S2,1=0 S2,1=2 S2,1=1

S2,2=1 S2,2=2 S2,2=0 S2,2=1 S2,2=0 S2,2=2 S2,2=1

S2,3=1 S2,3=2 S2,3=0 S2,3=1 S2,3=1 S2,3=2 S2,3=0 S2,3=1 S2,3=0 S2,3=2

Figure B3. Decisional tree for the construction of degree-spectra matrices
realizing J and corresponding to pentagon graphs. The 12 leaves of the tree
are shown in red.

If S2,1 = 0, the allowed values for S2,2 are 1 and 2. Choosing 2 �xes all the other
elements of the degree-spectra matrix. Conversely, choosing 1 results in S2,3 still to be
determined. Its possible values are 1 and 2. Thus, there are 3 di�erent degree-spectra
matrices with S2,1 = 0.

If, instead, S2,1 = 2, the situation is very similar to the �rst case. The possible
choices for S2,2 are 0 and 1. Choosing 0 �xes the entire matrix; choosing 1 requires
to select a value for S2,3, which can be either 0 or 1. Thus, there are 3 matrices with
S2,1 = 2.

The third possibility of S2,1 = 1 still allows degree-spectra matrices corresponding
to a pentagon graph. Similarly to the previous case, the simplest way to construct
one is to impose S2,2 = 0 or S2,2 = 2. In both cases, one must then choose a value for
S2,3. The possibilities are 1 and 2, if S2,2 = 0, or 0 and 1, if S2,2 = 2. Any choice for
S2,3 �xes all the remaining elements of the matrix.

Finally, it is still possible to choose S2,1 = 1 and S2,2 = 1, and still construct
matrices corresponding to a pentagon graph. The choice is again on S2,3. Choosing
S2,3 = 0 or S2,3 = 2 �xes all the other elements of the matrix, whose realizations will be
pentagon graphs. Imposing S2,3 = 1, instead results in the matrix SHB , exhausting
all possibilities. This shows that there are 6 di�erent matrices with S2,1 = 1 that
generate pentagon graphs.

The decisional tree we just described is shown in Fig. B3 as a visual aid. In
summary, there are 12 di�erent degree-spectra matrices that realize J and whose
realizations are always pentagon graphs. Knowing 〈c2〉P , 〈c3〉P , 〈c2〉HB and 〈c3〉HB ,
which we computed before, we can �nally calculate the weighted average clustering
coe�cients:

〈c2〉weighted =
12

13
· 1
4
+

1

13
· 13 =

10

39
(B.7)

〈c3〉weighted =
12

13
· 1
3
+

1

13
· 19 =

37

117
. (B.8)
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Table B1. Comparison between analytical and simulated averaged local
clustering coe�cients.

Coe�. Theor. unweigh. Simul. unweigh. Theor. weigh. Simul. weigh.
c2 0.25309 0.25320 0.25641 0.25664
c3 0.32510 0.32483 0.31624 0.31570

Appendix B.3. Numerical veri�cation
To validate our algorithm against the analytical results presented in the two
subsections above, we performed extensive numerical simulations, generating 104

degree-spectra matrices, and 104 samples per matrix, for a total of 108 graphs. For
each graph generated, we saved the average local clustering coe�cients for nodes of
both degrees. Then, we obtained both weighted and unweighted results by averaging
the data �rst naively, and then with a proper use of the weights according to Eq. 4.
The results, shown in Table B1, show that the weighted averages obtained using our
algorithm converge to the correct result. Also, the di�erence between weighted and
unweighted results can be appreciated even when it is quite small, as in our example.
This illustrate the sensitivity of our method, as well as the necessity of using proper
sampling when performing this kind of studies.
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