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ABSTRACT 34 

Chemical inhibitors are often implemented for the functional characterization of genes 35 

to overcome the limitations associated with genetic approaches. Although being a 36 

powerful tool, off-target effects of these inhibitors are easily overlooked in a complex 37 

biological setting. Here we illustrate the implications of such secondary effects by 38 

focusing on piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE 39 

(C4H) that is often used to investigate the involvement of lignin during plant growth 40 

and development. When supplied to plants, we found that PA is recognized as a 41 

substrate by GRETCHEN HAGEN 3.6 (GH3.6), an amido synthetase involved in the 42 

formation of the auxin catabolite indole-3-acetic acid (IAA)-Asp. By competing for the 43 

same enzyme, PA interferes with auxin conjugation, resulting in an increase in 44 

cellular auxin concentrations. These increased auxin levels likely further contribute to 45 

an increase in adventitious rooting previously observed upon PA-treatment. Despite 46 

the focus on GH3.6 in this report, PA is conjugated by an array of enzymes and their 47 

subsequent reduced activity on native substrates could potentially affect a whole set 48 

of physiological processes in the plant. We conclude that surrogate occupation of the 49 

endogenous conjugation machinery in the plant by exogenous compounds is likely a 50 

more general phenomenon that is rarely considered in pharmacological studies. Our 51 

results hereby provide an important basis for future reference in studies using 52 

chemical inhibitors. 53 
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INTRODUCTION   54 

Unraveling the physiological function of genes is challenging and a frequent 55 

strategy towards this goal is the use of loss-of-function mutants. Such strategies 56 

however come with certain limitations. Due to gene redundancy or compensation 57 

mechanisms, phenotypes can for instance be masked and if lethal phenotypes are 58 

obtained further analysis of the mutants is severely hampered (Bouché and Bouchez, 59 

2001, Rohde et al., 2004, El Houari et al., 2021b). An alternative approach is to use 60 

chemical inhibitors to interfere with the protein of interest and mimic loss-of-function 61 

mutants. These inhibitors work rapidly, their treatment is often reversible and they 62 

can be applied at a concentration and developmental time-point of interest, thereby 63 

circumventing problems related to lethality. In addition, gene redundancy is less of an 64 

issue as inhibitors often target related proteins, allowing simultaneous inactivation of 65 

different members of a gene family. On the other hand, the lack of specificity is often 66 

considered a drawback of pharmacological approaches, as it could come with 67 

unwanted off-target effects.  68 

Piperonylic acid (PA) is a well-known inhibitor of CINNAMATE-4-69 

HYDROXYLASE (C4H; (Schalk et al., 1998, Van de Wouwer et al., 2016, Desmedt et 70 

al., 2021, El Houari et al., 2021b)) and is often used to demonstrate the involvement 71 

of the phenylpropanoid pathway in distinct developmental and physiological plant 72 

processes (Naseer et al., 2012, Lee et al., 2013, Lee et al., 2019, Reyt et al., 2020). 73 

For example, we previously used PA to investigate the role of phenylpropanoid-74 

derived lignin in phloem-mediated auxin transport (El Houari et al., 2021b). The 75 

perturbation of auxin transport in PA-treated etiolated seedlings resulted in the 76 

accumulation of adventitious roots (AR) specifically at the top part of the hypocotyl, a 77 
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phenotype that could be partly complemented by restoring lignification. In this follow-78 

up study we assess the validity of PA as an inhibitor of C4H by mapping its off-target 79 

effects. 80 

RESULTS 81 

In the model plant Arabidopsis thaliana C4H is encoded by a single copy gene 82 

(Raes et al., 2003). As redundancy is not at play for this gene, similar effects on the 83 

phenylpropanoid pathway are to be expected for PA-treated plants and c4h knockout 84 

mutants. This assumption was confirmed in a previously reported experiment 85 

comparing the metabolome of etiolated mock-treated Col-0, PA-treated Col-0 and 86 

c4h-4 mutant seedlings (El Houari et al., 2021b). The metabolite profiles of the latter 87 

two clustered closely together in a PCA plot, but separately from those of the mock-88 

treated Col-0 samples. This indicated that genetic and pharmacological inhibition of 89 

C4H causes a similar effect on the metabolome. However, when we excluded Col-0 90 

from the PCA analysis, the metabolic profiles obtained from c4h-4 mutants and PA-91 

treated seedlings resulted in the formation of two separate clusters (Fig. 1A), 92 

pinpointing at least some metabolic differences between the two conditions. The 93 

most evident explanation for this difference is the presence of PA itself, as PA was 94 

not added to the c4h-4 mutants. A total of 398 statistically significant differentially 95 

abundant compounds were detected between the c4h-4 mutant and PA-treated 96 

seedlings (p<0.0001). To further investigate the cause of this difference we assessed 97 

the top 15 of differential compounds between PA-treated seedlings and the c4h-4 98 

mutant (Table 1). All 15 compounds were present in the PA-treated samples but 99 

nearly entirely absent in the c4h-4 mutant. Eight compounds could be characterized 100 

from this set and these were all structurally related to PA, as they were either free PA 101 
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or PA-conjugates (Table 1). The highest differentially accumulating compounds were 102 

the amino acid conjugates PA-Asp and PA-Glu, with the detected quantity of PA-Asp 103 

being higher than that of all 14 other top differential compounds combined. 104 

Noteworthy was also the lower amount of free PA detected compared to its 105 

conjugates, reflecting a strong detoxification of PA by the plant.  106 

The conjugation of metabolites to amino acids in plants is known to be 107 

conducted by the GRETCHEN-HAGEN3 (GH3) protein family (Staswick et al., 2005) 108 

and is key in the homeostasis of phytohormones and other bioactive molecules. 109 

Among these, the GH3.6-mediated conjugation of auxin (indole-3-acetic acid; IAA) to 110 

Asp, Ala, Phe and Trp is one of the best documented processes (Staswick et al., 111 

2005). Intriguingly, PA and IAA are similar in size (166 and 175 Da, respectively) and 112 

both molecules consist of a planar aromatic carbon skeleton decorated with a 113 

carboxylic acid (Fig. 1B). Despite these similarities, both compounds have a different 114 

core carbon skeleton, PA being a benzodioxane whereas IAA is an indole. 115 

Additionally, the length of the side chains differs for both compounds, as IAA is 116 

decorated with an acetic acid and PA is decorated with a carboxylic acid. However, 117 

considering the general substrate promiscuity of the GH3s (Staswick et al., 2005), it 118 

is not unlikely that PA could also be recognized by GH3.6 as a substrate. To predict 119 

whether binding of PA to GH3.6 is possible and to estimate the likelihood of such an 120 

event, we performed a comparative in silico docking experiment using PA as well as 121 

IAA as substrates (Fig. 1C). As the structure of GH3.6 has not yet been solved, we 122 

did a comparative modelling using the crystal structure of GH3.5 as a template. Since 123 

GH3.6 is expected to have the same two-step catalytic mechanism as GH3.5 124 

(Westfall et al., 2016), we retained adenosine monophosphate (AMP) within our 125 
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model. The docking results for the natural ligand IAA show an excellent 126 

correspondence between the best predicted binding pose and that adopted by the 127 

substrate within GH3.5, as revealed by the crystal structure (Fig. 1C, left panel). This 128 

suggests that the binding of IAA onto GH3.6 is indeed very likely to happen via the 129 

same interactions as in GH3.5. A comparison of this result with the docked poses of 130 

PA revealed the occurrence of a bound pose identical to that of IAA (Fig. 1C, right 131 

panel) within the top 5 predicted poses for PA. This indicates that PA is a strong 132 

ligand for GH3.6. To gain empirical evidence that PA can indeed be conjugated by 133 

GH3.6, we evaluated the conjugation of PA by GH3.6 in vitro (Fig. 1D). As a positive 134 

control we provided GH3.6 with both IAA and Asp, which resulted in the formation of 135 

IAA-Asp. Supplying GH3.6 with both PA and Asp resulted in the formation of the PA-136 

Asp conjugation product, demonstrating that PA can indeed be conjugated to Asp by 137 

GH3.6 in vitro. 138 

Having shown that GH3.6 conjugates PA to Asp, we speculated that a major 139 

increase in PA levels could overload the catabolic machinery of the plant and thus 140 

obstruct the conjugation of IAA. To verify this model, we assessed whether PA-141 

treatment could indeed inhibit or slow down IAA conjugation. For this purpose, we 142 

implemented a cellular auxin conjugation assay, in which BY2 cell cultures are fed 143 

with the radiolabeled synthetic auxin analog [3H]NAA. When supplemented, NAA 144 

enters the cell passively but is exported actively out of the cell (Delbarre et al., 1996). 145 

Inside the cell, the radiolabeled NAA is conjugated by a range of catabolic enzymes, 146 

including GH3.6. This conjugation makes NAA unavailable for auxin exporters and 147 

traps the signal inside the cell. We hypothesized that should PA interfere with IAA 148 

conjugation, the NAA entering the cell would not be conjugated and thus remain 149 
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available for export, resulting in a lower end-point signal compared with mock-treated 150 

samples. As expected, treatment of the cell cultures with only [3H]NAA resulted in a 151 

steady increase in signal over time, as a fraction of [3H]NAA is conjugated and can 152 

therefore not be exported (Fig. 2A). Upon co-treatment of the cell-cultures with 153 

[3H]NAA and PA, the intracellular level of [3H]NAA quickly reached a plateau, with 154 

final [3H]NAA levels significantly lower compared to those of mock-treated samples 155 

(Fig. 2A). These results further indicate that PA-treatment indeed impedes auxin 156 

conjugation.  157 

These results are however not conclusive for a PA-mediated obstruction of the 158 

conjugation of IAA to Asp in the cell, as NAA is a synthetic analog of IAA and as we 159 

did not specifically assess conjugation to Asp. Therefore, we next verified whether 160 

PA-treatment could interfere with the conjugation of IAA to Asp in a cellular context 161 

(Fig. 2B). For this, IAA-Asp concentrations were assessed upon 2 and 4 hours after 162 

addition of 10 µM IAA with or without 50 µM PA in BY2 cell cultures. Whereas after 2 163 

hours no significant difference between mock and PA-treated samples was observed, 164 

after 4 hours the concentration of IAA-Asp formed was significantly lower upon PA-165 

treatment (Fig. 2B). This is likely due to PA competing with IAA for conjugation by 166 

GH3.6. To obtain conclusive evidence that PA interferes with the conjugation of IAA 167 

to Asp by GH3.6, we quantified the levels of IAA-Asp formed over time upon 168 

supplying GH3.6 in vitro with either IAA and Asp or IAA, Asp and PA (Fig. 2C). These 169 

data showed a significant reduction in the levels of IAA-Asp formed upon co-170 

treatment with PA. In addition, the levels of PA-Asp formed were significantly higher 171 

than those of IAA-Asp. These results show that PA effectively slows down the 172 

catabolism of IAA to IAA-Asp by GH3.6. 173 
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So far, we examined the involvement of GH3.6 in the conjugation of PA. To 174 

assess an involvement of the other GH3s in PA-conjugation, we quantified the shift in 175 

expression of IAA-conjugating GH3 genes in mock- or PA-treated seedlings (Fig. 3A; 176 

(Staswick et al., 2005)). Of the six GH3 genes tested, five showed a significant 177 

upregulation upon PA-treatment (i.e. GH3.1, GH3.2, GH3.3, GH3.5 and GH3.6), with 178 

only GH3.4 expression not significantly changed. These results point towards a 179 

strong GH3-mediated response in PA-treated plants. Treatment with PA was 180 

previously shown to strongly induce AR growth in seedlings and to do this specifically 181 

at the top part of the hypocotyl (El Houari et al., 2021b). We therefore assessed 182 

whether the interference of PA with the conjugation of IAA by GH3s would contribute 183 

to this phenotype. To do so, we compared the AR growth of a sextuple gh3 mutant 184 

defunct for the same GH3 genes whose expression we previously assessed 185 

(gh3.1,2,3,4,5,6; Fig. 3B) to AR growth in mock- and PA-treated Col-0 seedlings. ARs 186 

were quantified while also considering their localization on the hypocotyl, being either 187 

at the top third part or the bottom two thirds part. As previously described, PA-treated 188 

Col-0 seedlings displayed a strong increase in total ARs compared to the mock-189 

treated Col-0 plants and this increase was specifically situated at the top part of the 190 

hypocotyl (El Houari et al., 2021b). Correspondingly, the gh3 sextuple mutants also 191 

showed a strong induction of AR compared to the mock-treated Col-0 plants (Fig. 192 

3B), albeit along the entirety of the hypocotyl. These results thus demonstrate that 193 

prohibiting GH3-mediated conjugation of IAA upon PA-treatment could indeed 194 

contribute to an overall increase in AR growth proliferation. 195 

 196 

 197 
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DISCUSSION 198 

Plants make extensive use of small compounds to steer their growth and 199 

development. As these bioactive compounds can easily negatively affect plant growth 200 

when mislocalized or when over or under abundant, their availability is under tight 201 

control. Accordingly, plants are equipped with a range of enzymes that mediate the 202 

conjugation and/or sequestration of these compounds, such as UDP-203 

glycosyltransferases (UGTs), glutathione-S-transferases (GSTs) and amido 204 

synthetases (Schröder and Collins, 2002, Casanova-Sáez et al., 2021). For example, 205 

the glycosylation of several phenylpropanoids allows for the regulation of their 206 

endogenous levels via sequestration to the vacuole (Dima et al., 2015, Le Roy et al., 207 

2016), a mechanism which is proposed to mitigate the toxicity of bioactive 208 

phenylpropanoid accumulation (Le Roy et al., 2016, Vanholme et al., 2019, El Houari 209 

et al., 2021a, Steenackers et al., 2019). Such conjugating enzymes tend to have 210 

large substrate promiscuities and can act both on endogenous compounds as well as 211 

compounds that are exogenous to the plant (Staswick et al., 2005, Mateo-Bonmateı 212 

and Ljung, 2021, Aoi et al., 2020). Consequently, when exogenous compounds are 213 

supplied in excess, their inactivation could overwhelm the pool of catabolic enzymes 214 

and jeopardize the homeostasis of endogenous bioactive compounds. 215 

Here, we demonstrate that piperonylic acid (PA), an inhibitor of CINNAMATE-216 

4-HYDROXYLASE (C4H), is recognized by GRETCHEN HAGEN 3.6 (GH3.6), an 217 

enzyme known to be involved in the conjugation of amino acids to several molecules. 218 

One of the best-studied substrates of GH3.6 is the phytohormone indole-3-acetic acid 219 

(IAA). We show that excessive PA treatment effectively slows down auxin 220 

conjugation, resulting in an increase in the intracellular levels of free auxin. 221 
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Specifically, we show that PA can slow down conjugation of auxin to Asp by GH3.6, 222 

hereby likely contributing to visible phenotypes. Although we focused on GH3.6, it is 223 

likely that PA can also be recognized by other GH3 enzymes and can interfere with 224 

their normal cellular activity. In addition, the perturbation should not be limited to the 225 

amino acid conjugating enzymes. Glucosyl conjugation products of PA were also 226 

highly accumulating in PA-treated seedlings (Table 1), indicating that also the 227 

conjugation of auxin to sugars by UDP-glycosyltransferases (UGTs) can be impaired. 228 

PA-treated plants show an accumulation of AR and these AR are typically 229 

located in the top part of the hypocotyl (Fig. 3B). This was shown to be caused by a 230 

perturbation in auxin transport upon inhibition of C4H by PA (El Houari et al., 2021b). 231 

Correspondingly, the gh3 sextuple mutant also showed a strong induction of AR 232 

compared to the mock-treated Col-0 plants. However, in contrast to PA-treated 233 

seedlings, the AR growth in the gh3 sextuple mutant was increased along the entire 234 

hypocotyl instead of specifically at the top third part. Importantly, c4h-4 mutant 235 

seedlings also showed an increase of AR specifically in the top part of the hypocotyl, 236 

despite not being treated with PA (El Houari et al., 2021b). Together, these results 237 

seem to indicate that prohibiting GH3-mediated conjugation of IAA upon PA-238 

treatment could indeed contribute to an overall increase in AR growth proliferation. 239 

However, the specific apical induction of AR is not caused by the interference of PA 240 

with IAA conjugation per se. Rather, it is likely to be caused by the inhibition of C4H 241 

and the consequential perturbation of auxin transport, as previously described (El 242 

Houari et al., 2021b). The increase in AR observed upon knocking out GH3s could 243 

also explain for some slight phenotypic differences between PA-treated plants and 244 

the c4h-4 mutant. In the c4h-4 mutant, the auxin redistribution in the hypocotyl upon 245 
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inhibition of auxin transport goes along with a decrease in AR at the bottom part of 246 

the hypocotyl (El Houari et al., 2021b). In contrast, PA-treated seedlings rarely show 247 

such decrease in the number of ARs in this region, regardless of the PA 248 

concentrations used. This phenotypic difference can be explained by the obstruction 249 

of auxin catabolism upon treatment with PA. The resulting higher levels in free auxin 250 

counteract the depletion in auxin at the bottom part of the hypocotyl caused by a 251 

perturbed auxin transport. This results in a higher number of AR in this region upon 252 

PA-treatment compared with the c4h-4 mutant. This hypothesis is consistent with the 253 

large increase in ARs observed at the bottom part of the hypocotyl in the gh3 254 

sextuple mutant (Fig. 3B). 255 

The conjugation of endogenous plant hormones by GH3s and UGTs has not 256 

only been described for auxin but also for other phytohormones, such as jasmonate 257 

and salicylic acid (Zhang et al., 2007, Ding et al., 2008, Westfall et al., 2016, 258 

Casanova-Sáez and Voß, 2019). Therefore, PA-treatment could influence the 259 

endogenous levels of not only auxin but several other bioactive molecules, thereby 260 

indirectly affecting a large array of biological processes. Also, and importantly, 261 

treatment with other exogenous compounds will likely also obstruct the metabolism of 262 

endogenous molecules in the same manner. Therefore, other chemical inhibitors 263 

could, analogously to PA, influence phytohormonal homeostasis by hijacking the 264 

plant conjugation machinery. As a consequence, the transcriptome, proteome and 265 

metabolome might be altered by such treatment in an indirect manner, causing 266 

erroneous conclusions to be drawn. We therefore advise to take into account and 267 

assess the catabolism of the exogenous compound by the plant, as this could give 268 
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valuable insight into possible off-target effects caused by the implemented compound 269 

and prohibit confusing primary with secondary effects.  270 

MATERIAL & METHODS 271 

 272 

Plant material, transgenic lines, chemicals and growth conditions 273 

Arabidopsis thaliana of the Col-0 ecotype was used for all analyses. The c4h-4 274 

mutant (GK-753B06; (Kleinboelting et al., 2012)) was obtained from the NASC 275 

institute. Seeds were vapor-phase sterilized and plants grown on ½ Murashige & 276 

Skoog (MS) medium (pH 5.7) containing 2.15 g MS basal salt mixture powder 277 

(Duchefa), 10 g sucrose, 0.5 g MES monohydrate, 8 g plant tissue culture agar per 278 

liter. When relevant, the medium was supplemented with either dimethyl sulfoxide 279 

(DMSO) as a mock treatment or piperonylic acid (PA; Sigma Aldrich). This compound 280 

was prepared as a stock solution in DMSO and was added to the autoclaved medium 281 

before pouring the plates. Seeds were stratified via a 2-d cold treatment. Adventitious 282 

rooting induction was performed as described previously (El Houari et al., 2021b). 283 

 284 

Phenotyping 285 

Adventitious rooting was analyzed as described in El Houari et al., 2021. Subsequent 286 

statistical analyses of rooting phenotypes were also performed as described in El 287 

Houari et al., 2021. 288 

 289 

Metabolic profiling and analysis 290 

The data used for the metabolic profiling was obtained from El Houari et al., 2021. To 291 

detect significant differential metabolites between the c4h-4 and PA-treated seedlings 292 
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we applied several criteria: (1) Peaks should be present in all samples of at least one 293 

out of two conditions; (2) Student’s t-test P < 0.0001; (3) average normalized 294 

abundance should be higher than 100 counts in at least one out of two conditions; (4) 295 

there should be at least a 100-fold difference in peak area between the two 296 

conditions. From this set, the 15 most abundant peaks were selected and sorted by 297 

detected quantities in PA-treated samples. Annotation of compounds matching these 298 

criteria was based on accurate m/z, isotope distribution, and tandem mass 299 

spectrometry (MS/MS) similarities. Compounds were structurally elucidated based on 300 

similarity of their MS/MS spectra with commercially available standards and 301 

previously identified metabolites that were already described in the literature. 302 

 303 

Homology modelling and docking 304 

To create a putative structure of GH3.6 Modeller 10.1 was used (Šali and Blundell, 305 

1993). Chain B of the crystal structure of AtGH3.5 was selected as template, since it 306 

has a sequence identity of 91% with AtGH3.6 on an alignment over 573 residues out 307 

of 612. Note that of the 39 non-aligned residues, all but 14 were found at the termini 308 

of the protein, where short disordered loops were not crystallized. 64 different initial 309 

models were built, performing a slow annealing stage twice on each one. Each model 310 

was then refined 16 independent times, specifically targeting the non-aligned region 311 

between R376 and A389 to predict its folded state using loop refinement (Fiser and 312 

Do, 2000). In all the resulting 1024 models, the presence of AMP within the binding 313 

site was retained. To identify the best model, each was scored according to a high-314 

resolution version of the Discrete Optimized Protein Energy, or DOPE-HR (Shen and 315 

Sali, 2006), and the model with the best score that did not exhibit structural clashes 316 

was chosen. All docking runs were performed with Autodock Vina (Vina, 2010). A 317 
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search space of 7400 cubic Å (20x20x18.5) centered on the binding site (x, y and z 318 

coordinates -2.04, 101.2 and 94.73, respectively) was set and a search 319 

exhaustiveness of 128 was used. Ligand files were drawn and energy-minimized in 320 

Avogadro2 (Hanwell et al., 2012). Ligand files and model were prepared for docking 321 

using AutoDockTools (Morris et al., 2009). Docked poses were evaluated visually 322 

using IAA as the reference. All visualizations were produced using UCSF Chimera 323 

(Pettersen et al., 2004). 324 

 325 

Enzyme assays 326 

IAA conjugation assays were done using GH3.6-GST fusion protein produced in E. 327 

coli as previously described (Staswick et al., 2005). For kinetic reactions enzyme was 328 

released from GST beads using reduced glutathione. Qualitative analysis reactions 329 

(Fig. 1D) were performed for 16 h at 23°C in 50 mM Tris-HCl, pH 8.6, 1 mM MgCl2, 1 330 

mM ATP, 1 mM DTT, and 2 mM Asp. Either IAA (1 mM) or PA (10 mM) was included 331 

in each reaction. Reactions were analyzed on silica gel 60 F260 plates developed in 332 

chloroform:ethyl acetate:formic acid (35:55:10, v/v) and then stained with vanillin 333 

reagent (6% vanillin [w/v], 1% sulfuric acid [v/v] in ethanol). Kinetic experiment 334 

assays (Fig. 2C) were carried out as described for JA-Ile conjugation (Suza and 335 

Staswick, 2008), substituting PA, IAA and Asp (1 mM each) as the substrates with 336 

the GH3.6 enzyme. Results were extrapolated over a linear range that included 337 

assay timepoints of 2,5,8 and 10 min. Reaction products were quantified by GC/MS 338 

using 13C6 IAA-Asp as an internal standard for IAA and using a linear standard curve 339 

for PA-Asp, the latter synthesized and purified as previously described for JA 340 

conjugates (Staswick and Tiryaki, 2004). 341 

 342 
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Cellular auxin conjugation assays 343 

Assays were performed according to (Petrášek et al., 2003). Auxin accumulation was 344 

measured in tobacco BY-2 cells (Nicotiana tabacum L. cv. Bright Yellow 2; (Nagata et 345 

al., 1992)) 48 hours after subcultivation. Cultivation medium was removed by filtration 346 

on 20 μm mesh nylon filters and cells were resuspended in uptake buffer (20 mM 347 

MES, 10 mM sucrose, 0.5 mM CaSO4, pH adjusted to 5.7 with KOH) and 348 

equilibrated for 45 minutes on the orbital shaker at 27 °C in darkness. Cells were 349 

then collected by filtration, resuspended in fresh uptake buffer and incubated for 350 

another 90 minutes under the same conditions. Radiolabelled auxin 351 

([3H]naphthalene-1-acetic acid (3H-NAA); specific radioactivity 20 Ci/mmol; American 352 

Radiolabeled Chemicals, ARC Inc., St. Louis, MO, USA) was added to the cell 353 

suspension to the final concentration of 2 nM. 0.5 ml aliquots of cell suspension 354 

(density 7×105 cells×ml-1) were sampled and accumulation of auxin was terminated 355 

by rapid filtration under reduced pressure on cellulose filters. Samples with filters 356 

were transferred into scintillation vials, extracted with ethanol for 30 minutes and 357 

radioactivity was determined by liquid scintillation counting (Packard Tri-Carb 358 

4910TR scintillation counter, Packard Instrument Co., Meridien, CT, USA). Counting 359 

efficiency was determined by automatic external standardization and counts were 360 

corrected for quenching automatically. Counts were corrected for remaining surface 361 

radioactivity by subtracting counts of aliquots collected immediately after addition of 362 

3H-NAA. Piperonylic acid and solvent control (DMSO) were applied 1 minute after the 363 

start of the experiment. Recorded accumulation values were recalculated to pmol/1 364 

million cells. 365 

 366 

Cellular IAA-Asp conjugation assays 367 
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Cellular auxin metabolites were determined in tobacco BY-2 cells (Nicotiana tabacum 368 

L. cv. Bright Yellow 2; (Nagata et al., 1992)) supplied with 10 μM IAA and 50 μM 369 

piperonylic acid 48 hours after subcultivation. Samples (ca. 10 mg FW) were 370 

homogenized and extracted with 100 µL 50% acetonitrile solution. The following 371 

isotope-labelled standards were added at 1 pmol per sample: 13C6-IAA (Cambridge 372 

Isotope Laboratories, Tewksbury, MA, USA); 2H4-SA (Sigma-Aldrich, St. Louis, MO, 373 

USA); 2H3-PA, 2H3-DPA (NRC-PBI); 2H6-ABA, 2H5-JA, 2H5-tZ, 2H5-tZR, 2H5-tZRMP, 374 

2H5-tZ7G, 2H5-tZ9G, 2H5-tZOG, 2H5-tZROG, 15N4-cZ, 2H3-DZ, 2H3-DZR, 2H3-DZ9G, 375 

2H3-DZRMP, 2H7-DZOG, 2H6-iP, 2H6-iPR, 2H6-iP7G, 2H6-iP9G, 2H6-iPRMP 2H2-GA19, 376 

(2H5)(
15N1)-IAA-Asp and (2H5)(

15N1)-IAA-Glu (Olchemim, Olomouc, Czech Republic). 377 

The extracts were centrifuged at 4 °C and 30,000× g. The supernatants were applied 378 

to SPE Oasis HLB 96-well column plates (10 mg/well; Waters, Milford, MA, USA) 379 

activated with 100 µL methanol and then eluted with 100 µL 50% acetonitrile using 380 

Pressure+ 96 manifold (Biotage, Uppsala, Sweden). The pellets were re-extracted in 381 

100 µL portions of 50% acetonitrile, centrifuged and applied again to the column 382 

plates. Phytohormones in each eluate were separated on Kinetex EVO C18 column 383 

(2.6 µm, 150 × 2.1 mm, Phenomenex, Torrance, CA, USA). Mobile phases consisted 384 

of A—5 mM ammonium acetate and 2 µM medronic acid in water and B—95:5 385 

acetonitrile:water (v/v). The following gradient was applied: 5% B in 0 min, 5–7% B 386 

(0.1–5 min), 10–35% B (5.1–12 min) and 35–100% B (12–13 min), followed by a 1 387 

min hold at 100% B (13–14 min) and return to 5% B. Hormone analysis was 388 

performed with a LC/MS system consisting of UHPLC 1290 Infinity II (Agilent, Santa 389 

Clara, CA, USA) coupled to 6495 Triple Quadrupole Mass Spectrometer (Agilent, 390 

Santa Clara, CA, USA), operating in MRM mode, with quantification by the isotope 391 
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dilution method. Data acquisition and processing was performed with Mass Hunter 392 

software B.08 (Agilent, Santa Clara, CA, USA). 393 

 394 

 395 

RNA isolation and qRT-PCR analysis  396 

Total RNA was isolated from etiolated seedlings grown according to El Houari et al., 397 

2021 with TriZol (Invitrogen), purified with the RNeasy Plant Mini Kit (Qiagen) and 398 

treated with DNase I (Promega). Complementary DNA (cDNA) was prepared with the 399 

iScript cDNA Synthesis Kit (Bio-Rad) according to the manufacturer’s instructions. 400 

Relative transcript abundancies were determined using the Roche LightCycler 480 401 

and the LC480 SYBR Green I Master Kit (Roche Diagnostics). The resulting cycle 402 

threshold values were converted into relative expression values using the second 403 

derivative maximum method and ACTIN2, ACTIN7 and UBIQUITIN10 were used as 404 

reference genes for normalization. All experiments were performed in three biological 405 

replicates (~10 seedlings per replicate), each with three technical replicates. The 406 

primer sequences are listed in Supplemental Table S1. 407 

 408 

SUPPLEMENTAL DATA 409 

Supplemental table S1. Primers used for qPCR analysis 410 

 411 
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TABLES 430 

Table 1. PA is conjugated by the plant. 431 

Metabolic profiling was performed for etiolated mock-treated Col-0, piperonylic acid 432 

(PA)-treated Col-0 and c4h-4 seedlings (El Houari et al. 2021b). The table shows the 433 

detected quantities of the top accumulating compounds for PA-treated compared with 434 

c4h-4 seedlings (n>7) for all 3 conditions (mock-treated Col-0, PA-treated Col-0 and 435 

c4h-4 seedlings). For each of these compounds a unique number (No.), mass-to-436 

charge ratio (m/z) and retention time (RT) is given.       437 

 438 

  439 

No. RT m/z Name WT   c4h-4   PA 

1 5.64 280.0457 Piperonyl aspartate 0.00 ± 0.00   3.00 ± 8.21   9085.10 ± 2990.26 

2 6.49 294.0613 
Piperonyl 
glutamate 0.00 ± 0.00   0.00 ± 0.00   2176.32 ± 895.68 

3 9.04 753.1494 Unknown 0.00 ± 0.00   0.00 ± 0.00   1001.24 ± 440.91 
4 5.80 327.0711 Piperonyl hexose 0.00 ± 0.00   1.00 ± 1.54   710.03 ± 250.90 

5 4.84 293.0772 no MS/MS 2.00 ± 0.59   0.00 ± 0.00   576.88 ± 238.47 

6 5.26 407.0281 
Piperonyl 
sulfohexose 0.00 ± 0.00   0.00 ± 0.00   531.41 ± 215.38 

7 9.51 380.9547 no MS/MS 0.00 ± 0.00   0.00 ± 0.00   473.64 ± 161.19 

8 5.63 236.0553 
Piperonyl aspartate 
fragment 0.00 ± 0.00   0.00 ± 0.00   380.09 ± 128.55 

9 5.78 165.019 Piperonyl hexose 0.00 ± 0.00   0.00 ± 0.00   349.51 ± 78.97 

10 5.62 379.9698 Unknown 0.00 ± 0.00   0.00 ± 0.00   345.08 ± 92.89 
11 9.52 165.019 Piperonylic acid 0.00 ± 0.00   0.00 ± 0.00   298.39 ± 82.70 

12 5.77 363.047 Unknown 0.00 ± 0.00   0.00 ± 0.00   261.41 ± 95.63 

13 4.61 535.1293 
Piperonylic acid + 2 
hexoses 0.00 ± 0.00   0.00 ± 0.00   247.16 ± 117.25 

14 9.05 827.1488 no MS/MS 0.00 ± 0.00   0.00 ± 0.00   209.75 ± 190.79 

15 9.50 615.9776 no MS/MS 0.00 ± 0.00   0.00 ± 0.00   204.78 ± 78.18 
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FIGURE LEGENDS 440 

Figure 1. PA is recognized and conjugated by GH3.6. 441 

(A) Principal component analysis score plots for the metabolic profiles obtained by 442 

LC-MS analysis of etiolated c4h-4 and 50 μM PA-treated Col-0 seedlings (n>7). Each 443 

data point represents eight pooled seedlings. (B) Chemical structures of indole-3-444 

acetic acid (IAA) and piperonylic acid (PA). (C) Docking of the best possible position 445 

for IAA (left, pink) and PA (right, green) in the GH3.6 binding pocket. The 446 

experimentally determined position of IAA (orange) and adenosine monophosphate 447 

is shown for both figures. (D) TLC analysis of the products of in vitro enzymatic 448 

assays shows conjugation of Asp by GH3.6 to both IAA and PA. 449 

Figure 2. PA treatment slows down the conjugation of IAA to Asp by GH3.6. 450 

(A) Cellular auxin conjugation assay in BY-2 cells using radiolabeled [3H]NAA over 451 

time upon treatment with or without PA (n=4). Error bars represent standard error. (B) 452 

Quantification of IAA-Asp in BY-2 cells after 2 and 4 hours treatment with IAA and 453 

with or without PA (n=4). Error bars represent confidence intervals. Asterisks given to 454 

distinguish statistically significant values (*:P<0.05; Student’s t-test) (C) 455 

Quantification of the products IAA-Asp (yellow) and PA-Asp (blue) upon supplying 456 

GH3.6 in vitro with IAA and/or PA (n=2). Error bars represent confidence intervals. 457 

Asterisks given to distinguish statistically significant values (**:P<0.01; Student’s t-458 

test).  459 

Figure 3. Obstruction of GH3-mediated auxin catabolism results in increased 460 

adventitious rooting. 461 

(A) Expression levels of GH3.1-6 in mock-treated and PA-treated etiolated seedlings 462 

(n=9). Error bars represent 95% confidence intervals. Asterisks indicate significant 463 

differences compared to the corresponding mock-treatment (*, P<0.01; 464 

**,P<0.001;***, P<0.0001; Student’s t-test) (B) Average number of adventitious roots 465 

(ARs) of etiolated mock-treated Col-0, 50 μM PA-treated Col-0 and gh3 sextuple 466 

mutant seedlings (n>20). Yellow coloration, top third part of the hypocotyl; blue 467 

coloration, lower two-thirds part of the hypocotyl. On the right, a representative 468 

seedling is presented for each of the conditions. Bar=1cm. Yellow arrow, ARs located 469 

at the top third part of the hypocotyl; blue arrow, ARs located at the bottom two-thirds 470 

part of the hypocotyl. Error bars represent 95% confidence intervals. Letters a-c are 471 
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given to distinguish statistically significant values (P<0.01; GEE model).472 
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Figure 1. PA is recognized and conjugated by GH3.6. 

(A) Principal component analysis score plots for the metabolic profiles obtained by LC-MS analysis 
of etiolated c4h-4 and 50 μM PA-treated Col-0 seedlings (n>7). Each data point represents eight 
pooled seedlings. (B) Chemical structures of indole-3-acetic acid (IAA) and piperonylic acid (PA). 
(C) Docking of the best possible position for IAA (left, pink) and PA (right, green) in the GH3.6 
binding pocket. The experimentally determined position of IAA (orange) and adenosine 
monophosphate is shown for both figures. (D) TLC analysis of the products of in vitro enzymatic 
assays shows conjugation of Asp by GH3.6 to both IAA and PA. 
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Figure 2. PA treatment slows down the conjugation of IAA to Asp by GH3.6. 

(A) Cellular auxin conjugation assay in BY-2 cells using radiolabeled [3H]NAA over time upon 
treatment with or without PA (n=4). Error bars represent standard error. (B) Quantification of IAA-
Asp in BY-2 cells after 2 and 4 hours treatment with IAA and with or without PA (n=4). Error bars 
represent confidence intervals. Asterisks given to distinguish statistically significant values 
(*:P<0.05; Student’s t-test) (C) Quantification of the products IAA-Asp (yellow) and PA-Asp (blue) 
upon supplying GH3.6 in vitro with IAA and/or PA (n=2). Error bars represent confidence intervals. 
Asterisks given to distinguish statistically significant values (**:P<0.01; Student’s t-test). 
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(A) Expression levels of GH3.1-6 in mock-treated and PA-treated etiolated seedlings (n=9). Error bars 
represent 95% confidence intervals. Asterisks indicate significant differences compared to the 
corresponding mock-treatment (*, P<0.01; **,P<0.001;***, P<0.0001; Student’s t-test) (B) Average 
number of adventitious roots (ARs) of  etiolated mock-treated Col-0, 50 μM PA-treated Col-0 and gh3 
sextuple mutant seedlings (n>20). Yellow coloration, top third part of the hypocotyl; blue coloration, lower 
two-thirds part of the hypocotyl. On the right, a representative seedling is presented for each of the 
conditions. Bar=1cm. Yellow arrow, ARs located at the top third part of the hypocotyl; blue arrow, ARs 
located at the bottom two-thirds part of the hypocotyl. Error bars represent 95% confidence intervals. 
Letters a-c are given to distinguish statistically significant values (P<0.01; GEE model). 

 

Figure 3. Obstruction of GH3-mediated auxin catabolism results in increased adventitious rooting. 
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