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ABSTRACT

The interactions between the components of many real-world systems are best modelled by networks
with multiple layers. Different theories have been proposed to explain how multilayered connections
affect the linear stability of synchronization in dynamical systems. However, the resulting equations
are computationally expensive, and therefore difficult, if not impossible, to solve for large systems.
To bridge this gap, we develop a mean-field theory of synchronization for networks with multiple
interaction layers. By assuming quasi-identical layers, we obtain accurate assessments of synchro-
nization stability that are comparable with the exact results. In fact, the accuracy of our theory
remains high even for networks with very dissimilar layers, thus posing a general question about the
mean-field nature of synchronization stability in multilayer networks. Moreover, the computational
complexity of our approach is only quadratic in the number of nodes, thereby allowing the study of
systems whose investigation was thus far precluded.

INTRODUCTION

The use of a network structure, consisting of a list of
pairwise connections called edges between discrete ele-
ments called nodes or vertices, has long been a power-
ful abstraction to model and investigate the behavior of
complex systems [1–3]. One area in which the network
paradigm has proved especially useful is the study of dis-
tributed coupled dynamical systems [4], where the nodes
correspond to dynamical systems that interact across the
edges. Collective and organized dynamics is widely stud-
ied in such networks, with a particular regard to the phe-
nomenon of synchronization, which holds fundamental
importance in numerous natural instances [4–20].

Within this topic, considerable attention has been
paid to the stability of synchronized states. A power-
ful method to estimate it is the so-called Master Sta-
bility Function (MSF) [6], which allows one to com-
pute the value of the largest Lyapunov exponent Λmax

of the system upon perturbation from the synchronized
state. Then, one can determine whether synchronization
is stable simply from its sign: the perturbed system will
asymptotically re-synchronize only if Λmax is negative.
The MSF has maintained its status as method of choice
even when applied to models that extend the network
approach to the multilayer case [21–23] and to networks
with higher-order interactions [24], which better capture
the many levels of complexity of real-world systems.

In the dynamical multilayer networks we consider here,
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the nodes are allowed to interact over multiple layers,
each representing a different type of interaction. Thus,
they can be considered a special case of the traditional
multiplex networks, in which each node is replicated in
every layer, and interlayer links determine how the state
in each layer affects those of the neighbouring ones. Net-
works with multiple interaction layers are often encoun-
tered in natural and engineered complex systems of wide
relevance. The paradigmatic example is that of the ner-
vous system, in which the same neurons are connected to
each other via two different types of synapses [25]. An-
other instance is provided by the transport infrastructure
of large cities where the same station is served by multi-
ple means of mass transport. In both cases, the value of
a variable of interest, such as the potential accumulated
in a neuron or the state of congestion of a station, affects
equally all the processes involving the node [26].

The increase in complexity of the system with respect
to single-layer networks is reflected by the fact that the
use of the MSF no longer results in a single equation,
but rather produces a set of coupled linear differential
equations [27]. Apart from its generality, these master
stability equations allowed researchers to identify syn-
chronized states whose stability properties are inherently
due to the multiplex architecture, such as stable coher-
ent dynamics in networked layers that are unstable when
studied in isolation. Also, the versatility of the MSF
made it a method of choice to study this type of networks
under different conditions, such as time-varying struc-
tures [28], as well as with the help of other approaches,
such as fast-switching techniques [29]. Unfortunately, de-
spite the promising preliminary results, the master stabil-
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ity equations also have a drawback, as the computational
complexity of solving the system makes it unwieldy for
networks larger than a couple of hundred nodes. This
difficulty is due to the mathematical structure that re-
sults from the MSF approach, and therefore it does not
depend on the specific network model studied or on the
particular formalism used upon it. In fact, even when the
MSF takes a fairly workable form, such as in traditional
multiplex networks with dynamics formalized via supra-
Laplacians [23], the explicit numerical calculations reach
a high computational complexity if the supra-Laplacians
do not commute.

In this article, we introduce a mean-field theory of syn-
chronization for networks with multiple interaction lay-
ers. We derive our theory in the assumption that the
layers are quasi-identical, but show that its range of ap-
plicability encompasses the case of very dissimilar layers.
In particular, the estimate of the stability of synchro-
nization obtained with our theory virtually never changes
with respect to the exact result, suggesting that global
synchronization stability in multilayer networks is inher-
ently a mean-field phenomenon. In addition, the numer-
ical complexity of our method is lower than that of the
exact formulation, making it applicable to large systems
whose study would otherwise be prevented by computa-
tional costs.

RESULTS

The model

The derivation of a MSF on a networked system is
effectively a decomposition of the dynamics into eigen-
modes. In a network with N nodes and M interaction
layers, the connection weights of each layer α are the el-
ements of the weighted adjacency matrix W(α). Let xi
be an m-dimensional vector describing the state of node
i, and F : Rm → Rm and Hα : Rm → Rm be continuous
and differentiable vector fields describing the local dy-
namics and the interactions in layer α, respectively. As-
suming diffusive coupling between the nodes, the global
dynamics is determined by the system

ẋi = F (xi)−
M∑

α=1

σα

N∑

j=1

L
(α)
i,j Hα (xj) . (1)

In Eqs. (1), σα is the interaction strength within layer
α, and L(α) is the graph Laplacian of layer α, whose
diagonal elements are L(α)

i,i =
∑N
j=1W

(α)
i,j , and whose off-

diagonal elements are L(α)
i,j = −W (α)

i,j .
Following the approach by del Genio et al. [27], one can

linearize Eqs. (1), obtaining expressions for the evolution
of the global synchronization error vector, which can be
projected onto the eigenvectors of the Laplacian of one
of the layers. Choosing layer α = 1 (without loss of

generality) results in the system

η̇j =
(
JF (s)− σ1λ(1)j JH1 (s)

)
ηj+

−
M∑

α=2

σα

N∑

k=2

N∑

r=2

λ(α)r Γ
(α)
r,kΓ

(α)
r,j JHα (s)ηk . (2)

Here, η is a vector of vectors whose jth component is
the projection of the global synchronization error vector
onto the space spanned by the jth Laplacian eigenvector
of layer 1; J is the Jacobian operator; s is the state vector
corresponding to the synchronized state; λ(α)j is the jth
Laplacian eigenvalue of layer α; and Γ(α) is the spectral
overlap matrix between layer 1 and layer α, defined as
Γ(α) = V(α)TV(1), where V(α) is the matrix of Laplacian
eigenvectors of layer α and T indicates transposition.

Mean-field theory

To develop our theory, we start from the assumption
that the interaction layers are quasi-identical. Then, due
to their adjacency matrices and their Laplacians being
very similar, one can expect their Laplacian eigenvectors
to be equal up to some small perturbation. Our goal is
to spread the effect of this perturbation in an equal way
over all the directions transverse to the synchronization
manifold, which is identified by the Laplacian eigenvector
corresponding to the null eigenvalue. To do so, compute
the dynamical distance between layer α and layer 1 [27]:

`α,1 =

N∑

i=2







N∑

j=2

(
Ξ
(α,1)
i,j

)2

−

(
Ξ
(α,1)
i,i

)2


 . (3)

Note that, while here we consider dynamical distances
between any layer and the reference layer 1, in princi-
ple this quantity is an indicator of the similarity between
the dynamics of any two layers. In fact, its general defi-
nition is the sum of the squares of the off-diagonal terms
in the spectral overlap matrix between the two layers
considered, so that if the dynamics of the layers are iden-
tical (i.e., their Laplacians commute), their dynamical
distance vanishes. In the equation above, the matrices
Ξ(α,β) are defined as Ξ(α,β) = Γ(α)Γ(β)T = V(α)TV(β),
so that Ξ(α,1) = V(α)TV(1) = Γ(α). Also, the sums in
Eq. (3) start from 2 because the first Laplacian eigen-
vector is always N−1/2 (1, . . . , 1)

T. Therefore, Γ
(α)
1,1 = 1

and Γ
(α)
1,k = Γ

(α)
k,1 = 0 for all k > 1. Now note that each

Γ(α) is an orthogonal matrix, since it is the product of
two orthogonal matrices. Moreover, from the definition,
it follows that V(α) = V(1)Γ(α)T. In other words, Γ(α) is
the transformation matrix from the Laplacian eigenvec-
tors of the first layer to those of layer α. Then, our aim is
replacing Γ(α) with a Γ(α),MF whose action is to change
each eigenvector of the first layer in the same fashion.
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As Γ(α) is a rotation, a natural choice is to make
Γ(α),MF rotate the eigenvectors of the first layer by the
same angle in every direction. More precisely, we consider
all possible 2-dimensional subspaces of RN−1 determined
by choosing any two Laplacian eigenvectors of layer 1 ex-
cept the first, and then construct a matrix that rotates
all the Laplacian eigenvectors of layer 1 except the first
by the same amount in each of these subspaces. Note
that, in principle, this problem is underspecified, as rota-
tion matrices do not commute in 3 or more dimensions,
and the specific form of Γ(α),MF depends on the order
in which the rotations in the individual subspaces are
performed. However, since the layers are quasi-identical,
the rotation angle needed is very small, as we will justify
quantitatively later on. Thus, the rotations that com-
pose Γ(α),MF are infinitesimal. In turn, this means that
each one of them, and indeed Γ(α),MF itself, can be writ-
ten as the sum of the identity matrix and an element
of the Lie algebra of O (N − 1), or, more precisely, of
SO (N − 1), since the rotations are proper. Thus, for all
1 < r < s, the elements of the matrix R(r,s) that oper-
ates the rotation in the subspace spanned by the rth and
sth eigenvectors are

R
(r,s)
i,j =





1 if i = j

−ε(α) if i = r and j = s

ε(α) if i = s and j = r

0 otherwise ,

where ε(α) is the rotation angle, which depends on the
layer α. Importantly, all the R(r,s) commute, which re-
moves the problem of considering the order of the consti-
tutive rotations of Γ(α),MF. Taking into account all sub-
spaces, and neglecting terms of order higher than ε(α),
yields the following form for the matrix:

Γ(α),MF =




1 0 0 0 . . .
0 1 −ε(α) −ε(α) . . .
0 ε(α) 1 −ε(α) . . .

0 ε(α) ε(α) 1
. . .

...
...

...
. . . . . .



. (4)

Notice that Γ(α),MF is an orthogonal matrix, as it
should be, but only to first order, as expected from
the approximations used. Also note that the final re-
sults one obtains using this formulation are the same
that would be found using the exact expressions on
layers with a different structure. This mean-field-
equivalent structures can be found by first comput-
ing the mean-field-equivalent Laplacian eigenvectors us-
ing the same equation as above, namely V(α),MF =

V(1)
(
Γ(α),MF

)T
, and then using them to recover the

mean-field-equivalent Laplacian itself. To find the
value of ε(α) to be used in Eq. (4), one can notice

that

√
∑N
i=2

{[∑N
j=2

(
Γ
(α),MF
i,j

)2]
−
(
Γ
(α),MF
i,i

)2}
=

√
(N − 1) (N − 2) ε(α)

2
= ε(α)

√
(N − 1) (N − 2). But

from Eq. (3) and the fact that Ξ(α,1) = Γ(α) it follows
that this quantity has to be equal to

√
`α,1. Thus,

ε(α) =

√
`α,1

(N − 1) (N − 2)
. (5)

Note that Eq. (5) effectively provides a mean of the
dynamical distance over all the directions transverse to
the synchronization manifold, thereby justifying our def-
inition of the method as a mean-field theory. Finally, to
find the mean-field form of the MSF, one can notice that
Eq. (2) contains the product Γ

(α)
r,kΓ

(α)
r,j within its inner-

most sum. Then, replacing the matrices Γ(α) with their
mean-field version, one obtains

Γ
(α),MF
i,j =





1 if i = j

−ε(α) if j > i and i > 1

ε(α) if j < i and j > 1

0 otherwise .

Since, in Eq. (2), j, r and k are always greater than 1,
one can write

Γ
(α),MF
r,k Γ

(α),MF
r,j =





1 if r = k = j

−ε(α) if r=k and j>r,
or if k>r and r=j

ε(α) if r=k and j<r,
or if k<r and r=j

ε(α)
2 ≈ 0 if k>r and j>r,

or if k<r and j<r

−ε(α)2 ≈ 0 if k>r and j<r,
or if k<r and j>r .

Using the expression above, the second term on the right-
hand side of Eq. (2) becomes

M∑

α=2

σα

[
λjJHα (s)ηj+

j−1∑

k=2

ε(α)
(
λ
(α)
j − λ(α)k

)
JHα (s)ηk+

N∑

k=j+1

ε(α)
(
λ
(α)
k − λ(α)j

)
JHα (s)ηk

]
, (6)

where we have split the sum over k into k = j, k < j and
k > j.

The expression (6) greatly simplifies the calculations
with respect to the original formulation. In fact, the com-
putational complexity of calculating each component of η
according to Eq. (2) is O

(
N2M

)
, whereas using Eq. (6),

this reduces to O (NM). Also note that in Eq. (6), the
first term inside the sum over α corresponds to the case
of commuting Laplacians. Thus, while the transverse
modes are still not completely decoupled, which would
only be possible in the commuting case, our theory ef-
fectively consists in a first-order correction, obtained by
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Figure 1. The accuracy of our theory increases with
the ratio of the interaction strengths of the first layer
σ1 to that of the second layer σ2. The relative error in the
estimate of the largest Lyapunov exponent Λmax of the per-
turbed system decreases from a maximum of approximately
40% in region 6 (σ1/σ2 ≈ 0.0917) to a minimum of approxi-
mately 0.7% in region 3 (σ1/σ2 ≈ 3.5). Within each region,
the error increases sublinearly with the normalized dynamical
distance. Each point is averaged over 1,000 realizations; error
bars are smaller than the symbol size. Inset: schematic illus-
tration of the six regions (adapted from del Genio et al. [27]).
Layer 1 is individually stable only when σ1 is greater than a
critical value (red striped regions); layer 2 is individually sta-
ble only when σ2 lies between two critical values (blue striped
regions); region 1 is the only zone of the phase diagram where
both layers are already individually stable.

a mean-field perturbative approximation of the dynam-
ics. This becomes even more evident when rewriting the
whole Eq. (2) as

η̇j =

(
JF (s)−

M∑

α=1

σαλ
(α)
j JHα (s)

)
ηj−

M∑

α=2

ε(α)σα

[
N∑

k=2

∣∣∣λ(α)j − λ(α)k

∣∣∣ JHα (s)ηk

]
, (7)

for which we assume that the Laplacian eigenvalues are
sorted in a non-decreasing way.

The derivation of Eq. (7), which constitutes the mean-
field approximation of Eq. (2), not only offers a decrease
in the complexity of evaluating the linear stability of this
type of multiplexes, but also, more importantly, paves the
way to compute the stability diagram of systems whose
size is too large to permit the use of Eq. (2). For example,
a scaling test reveals that simulation of a single duplex
random network with 10000 nodes would take approxi-
mately 103 years on a workstation with a 16-core Intel®
Xeon® Gold 6130 CPU if using Eq. (2). This time would
be reduced to just above 5 days if using Eq. (6).

Figure 2. Synchronization stability of networks with
multiple interaction layers is virtually always mean-
field. In networks with N nodes per layer, for normalized
dynamical distances `2,1/(N − 1) smaller than 0.1, the ac-
curacy of the estimate of the maximum Lyapunov exponent
Λmax improves with system size. Also, the error in the esti-
mate never increases beyond 0.3, even for very large dynami-
cal distances. Each point is averaged over 1,000 realizations;
when not drawn, error bars are smaller than the symbol size.
Inset: our mean-field theory assesses synchronization stabil-
ity always correctly, with possible occasional exceptions only
occurring in very small systems.

Numerical validation

To demonstrate the validity and applicability of our
theory, we carried out extensive numerical simulations
on 2-layer random networks of chaotic Rössler oscilla-
tors. Note that the dynamical distance between layers
2 and 1, `2,1, is bound between 0 and N − 1. Thus, to
allow for a direct comparison between systems of differ-
ent size, we henceforth plot our results as a function of
the normalized dynamical distance ˜̀

2,1 = `2,1/(N−1). In
Fig. 1 we show the average error in the determination
of the largest Lyapunov exponent Λmax as a function of
˜̀. Our results indicate that the accuracy of the theory
is generally high, but with a marked dependence on the
region of the layer-stability phase diagram. More specif-
ically, the accuracy increases with the ratio σ1/σ2 , which
is on average different between the regions of the phase
diagram (schematically illustrated in the inset of Fig. 1).
This is consistent with our theory being a perturbative
correction to the commuting case, since the relative con-
tribution of such a correction is indeed inversely propor-
tional to the ratio of the interaction strengths within the
layers. At the same time, and as we stressed above, the
choice of the reference layer 1 is entirely arbitrary. As
such, one can always choose the layer with the largest
interaction strength to be layer 1, which implies that the
actual worst case scenario is the one in which all layers
have the same interaction strength.
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At the light of these considerations, we performed ad-
ditional simulations, now imposing σ1 = σ2, to evaluate
the performance of our theory for increasing system sizes.
The results, illustrated in Fig. 2, show that the theory
provides accurate results for a wide range of normalized
dynamical distances between layers.

To further explore the scope of applicability of our
method, we carried out extra simulations on net-
works consisting of three random layers, as well as on
preferential-attachment networks [30]. The results are
presented in three figures (Supplementary Figures 1–3)
of the Supplementary Information. The case of 3-layer
networks shows a general improvement with respect to
the 2-layer case, which is particularly evident for larger
systems sizes (see Supplementary Figure 1). Also, the
errors in assessment of synchronization stability com-
pletely vanish, even for smaller networks. The situation
is slightly different for preferential-attachment networks,
where the errors in assessing stability are not identically
null, but they remain fairly negligible, reaching a maxi-
mum of 0.8% at normalized dynamical distances of 0.3 or
more (see Supplementary Figure 2). The average relative
errors in estimating the maximum Lyapunov exponent
remain instead roughly in line with those for random net-
works, but without a clear trend with network size (see
Supplementary Figure 3).

DISCUSSION

The simulation results illustrated above show that the
error in the estimation of Λmax is never larger than
30%, even for normalized dynamical distances as high
as ˜̀ = 0.6. Importantly, when ˜̀< 0.1, the accuracy of
the estimate increases with the system size. This is most
likely a direct consequence of Eq. (5), which shows that,
for the same value of the normalized dynamical distance,
ε(α) decreases proportionally to

√
N .

The applicability of our theory increases even more
when considering the typical use of the MSF, namely
the assessment of the stability of synchronization. In
this case, our method virtually never fails in correctly
identifying stable and unstable synchronized states. In
our simulations, we only found occasional errors for at
most 0.2% of the cases, and exclusively in networks of
only 10 nodes. Given the very small size of such systems,
we believe these errors to have been caused by finite-size
effects, indicating that our theory always allows a correct
determination of synchronization stability, and it holds
true far beyond infinitesimal dynamical distances.

Note that, as this method is an approximation, we do
expect that it will present limitations. At the current
stage, we can only speculate that, in a manner similar
to other mean-field theories, it may stop providing cor-
rect results in the vicinity of critical transitions, or for
networks with pathological structures. Such cases are
however beyond the scope of the present work, and they
will be explored in future studies.

In conclusion, we developed a mean-field theory of syn-
chronization stability for networks with multiple interac-
tion layers. In principle, the same approach could be
applied to different types of networks, most likely result-
ing in similar but different equations. While the theory
has been derived under the assumption of quasi-identical
layers, we have shown that its range of validity and appli-
cability includes the case of very different layers. In fact,
our theory provides an accurate assessment of synchro-
nization stability in networks whose layers are actually
substantially different from each other. Moreover, the ac-
curacy of the predictions increases with system size, rais-
ing the question of whether, in the thermodynamic limit,
the linear stability of the globally synchronized state be-
comes a pure mean-field effect. In addition, the numerical
complexity of our approach is lower than that of the exact
solution of the problem. These considerations make the
application of our theory particularly attractive in the
case of large natural systems, whose studies have been
so far frustrated, if not completely inhibited, and which
may now become tractable both analytically and compu-
tationally.

METHODS

Network structures

The simulations performed on Erdős-Rényi used a
probability of occurrence of edges p = 0.4. This choice
was made to guarantee a high probability that the lay-
ers were connected, which was tested for in each case,
and which is a necessary condition for the existence of a
globally synchronized state. Simulations on layers with
heterogeneous topology were carried out on preferential-
attachment layers with the same density. After creat-
ing the reference layer, the second layer and third layer
were obtained by perturbing the edges of the first using a
doubling-bisecting scheme to target the desired normal-
ized dynamical distance with a tolerance of 10−4.

Layer dynamics

The local dynamics of Rössler oscillators is described
by x = (x1, x2, x3), F (x) = (−x2 − x3, x1 + ax2, b +
(x1 − c)x3)T. Here, we chose a = b = 0.2 and c = 9 to
ensure chaotic local dynamics. We also let the interac-
tion functions for the layers be H1 (x) = (0, x2, 0) and
H2 (x) = (x1, 0, 0), because these choices are known to
create a rich phase diagram with 6 distinct regions of be-
haviour determined by the combinations of synchroniza-
tion stability of the individual layers [27]. The third layer
in the 3-layer simulations was given interaction function
H3 (x) = (x1, 0, 0).



6

ODE integration

The differential equation systems were integrated us-
ing a Runge-Kutta-Fehlberg 4(5) method, with step size
0.01 and tolerance 10−6. The value of each initial compo-
nent of the projected global synchronization error vector
transverse to the synchronization manifold was chosen in-
dependently from a Gaussian distribution. This guaran-
tees that, upon normalization, the initial projected trans-
verse synchronization error vector was a uniform random
unit vector, due to the spherical symmetry of multivari-
ate normal distributions.

Estimate of maximum Lyapunov exponents

To compute the maximum Lyapunov exponents,
after a transient time of 50, we evolved the systems for
500 windows of 100 integration steps each. After each
window, we computed the logarithm of the norm of
the components of the projected global synchronization
errors transverse to the synchronization manifold, and
normalized them back to a unit vector. Their averages
provided estimates for the maximum Lyapunov expo-
nents sought.
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Supplementary Figure 1. The relative error in the largest Lyapunov exponent Λmax decreases with the number
of layers. The relative error in the estimate of the largest Lyapunov exponent of the perturbed system in 3-layer networks is
generally lower than that for 2-layer networks. This effect is particularly evident for the largest system size, consistently with
the scaling considerations about the rotation angle ε(α). Also, the range over which the accuracy increases with system size is
larger than it is for 2-layer networks. Each point is averaged over 1,000 realizations; error bars are smaller than the symbol
size.
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Supplementary Figure 2. Fraction of stability assessment errors in preferential-attachment networks. In networks
with heterogeneous layer topology, the errors in assessing the synchronization stability no longer vanish. Nonetheless, their
frequency remains very small, reaching a maximum of only 0.8% for normalized dynamical distances of at least 0.3. Each point
is averaged over 1,000 realizations.

Supplementary Figure 3. The relative error in the largest Lyapunov exponent in preferential-attachment networks
has no clear system-size dependence. The values of the average error in estimating the maximum Lyapunov exponent
remain similar to those obtained for random networks, but without presenting a clear trend with network size. Also, the
variability of the error is appreciably larger than it is for random networks. Each point is averaged over 1,000 realizations.


